| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Artificial intelligence based prediction of diabetic foot risk in patients with diabetes : a literature review
Avtorji:ID Gosak, Lucija (Avtor)
ID Svenšek, Adrijana (Avtor)
ID Lorber, Mateja (Avtor)
ID Štiglic, Gregor (Avtor)
ID Gosak, Lucija (Lastnik avtorskih pravic)
Datoteke:.pdf applsci-13-02823-v2.pdf (654,91 KB)
MD5: 0E284E987A0FBF80144DB3F5E532E094
 
URL https://www.mdpi.com/2076-3417/13/5/2823
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.02 - Pregledni znanstveni članek
Organizacija:FZV - Fakulteta za zdravstvene vede
Opis:Diabetic foot is a prevalent chronic complication of diabetes and increases the risk of lower limb amputation, leading to both an economic and a major societal problem. By detecting the risk of developing diabetic foot sufficiently early, it can be prevented or at least postponed. Using artificial intelligence, delayed diagnosis can be prevented, leading to more intensive preventive treatment of patients. Based on a systematic literature review, we analyzed 14 articles that included the use of artificial intelligence to predict the risk of developing diabetic foot. The articles were highly heterogeneous in terms of data use and showed varying degrees of sensitivity, specificity, and accuracy. The most used machine learning techniques were support vector machine (SVM) (n = 6) and K-Nearest Neighbor (KNN) (n = 5). Future research is recommended on larger samples of participants using different techniques to determine the most effective one.
Ključne besede:artificial intelligence, machine learning, thermography, diabetic foot prediction, diabetes, diabetes care, diabetic foot, literature review
Status publikacije:Objavljeno
Verzija publikacije:Recenzirani rokopis
Datum objave:01.01.2023
Leto izida:2023
Št. strani:str. 1-13
Številčenje:Vol. 13, iss. 5, [article no.] 2823
PID:20.500.12556/DKUM-86402 Novo okno
UDK:616.379-008.64:004.89
COBISS.SI-ID:147150339 Novo okno
DOI:10.3390/app13052823 Novo okno
ISSN pri članku:2076-3417
Datum objave v DKUM:27.11.2023
Število ogledov:377
Število prenosov:16
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Ostalo
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:22.02.2023

Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici