Naslov: | The k-independence number of direct products of graphs and Hedetniemi's conjecture |
---|
Avtorji: | Špacapan, Simon (Avtor) |
---|
Datoteke: | http://dx.doi.org/10.1016/j.ejc.2011.07.002
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano (r6) |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | FS - Fakulteta za strojništvo |
---|
Opis: | The ▫$k$▫-independence number of ▫$G$▫, denoted as ▫$alpha_k(G)$▫, is the size of a largest ▫$k$▫-colorable subgraph of ▫$G$▫. The direct product of graphs ▫$G$▫ and ▫$H$▫, denoted as ▫$G times H$▫, is the graph with vertex set ▫$V(G) times V(H)$▫, where two vertices ▫$(x_1, y_1)$▫ and ▫$(x_2, y_2)$▫ are adjacent in ▫$G times H$▫, if ▫$x_1$▫ is adjacent to ▫$x_2$▫ in ▫$G$▫ and ▫$y_1$▫ is adjacent to ▫$y_2$▫ in ▫$H$▫. We conjecture that for any graphs ▫$G$▫ and ▫$H$▫, ▫$$alpha_k(G times H) ge alpha_k(G)|V(H)| + alpha_k(H)|V(G)| - alpha_k(G) alpha_k(H).$$▫ The conjecture is stronger than Hedetniemi's conjecture. We prove the conjecture for ▫$k = 1, 2$▫ and prove that ▫$alpha_k(G times H) ge alpha_k(G)|V(H)| + alpha_k(H)|V(G)| - alpha_k(G) alpha_k(H)$▫ holds for any ▫$k$▫. |
---|
Ključne besede: | matematika, teorija grafov, neodvisnostno število, kartezični produkt grafov, mathematics, graph theory, independence number, Cartesian product of graphs |
---|
Leto izida: | 2011 |
---|
Št. strani: | str. 1377-1383 |
---|
Številčenje: | Vol. 32, no. 8 |
---|
UDK: | 519.17 |
---|
COBISS_ID: | 16079705  |
---|
ISSN pri članku: | 0195-6698 |
---|
NUK URN: | URN:SI:UM:DK:NWLVHO8H |
---|
Število ogledov: | 521 |
---|
Število prenosov: | 10 |
---|
Metapodatki: |  |
---|
Področja: | Ostalo
|
---|
:
|
|
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: |  |
|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |