| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Izpis gradiva Pomoč

Naslov:Gene set enrichment meta-learning analysis: next-generation sequencing versus microarrays
Avtorji:ID Štiglic, Gregor (Avtor)
ID Bajgot, Mateja (Avtor)
ID Kokol, Peter (Avtor)
Datoteke:.pdf BMC_Bioinformatics_2010_Stiglic,_Bajgot,_Kokol_Gene_set_enrichment_meta-learning_analysis_next-_generation_sequencing_versus_microarrays.pdf (1,17 MB)
MD5: 7E939CB045B8A26AB3543F140592E280
PID: 20.500.12556/dkum/0dc73667-95f8-4f7e-9f34-90384dcd6634
 
URL http://www.biomedcentral.com/1471-2105/11/176
 
Jezik:Angleški jezik
Vrsta gradiva:Znanstveno delo
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FZV - Fakulteta za zdravstvene vede
Opis:Background Reproducibility of results can have a significant impact on the acceptance of new technologies in gene expression analysis. With the recent introduction of the so-called next-generation sequencing (NGS) technology and established microarrays, one is able to choose between two completely different platforms for gene expression measurements. This study introduces a novel methodology for gene-ranking stability analysis that is applied to the evaluation of gene-ranking reproducibility on NGS and microarray data. Results The same data used in a well-known MicroArray Quality Control (MAQC) study was also used in this study to compare ranked lists of genes from MAQC samples A and B, obtained from Affymetrix HG-U133 Plus 2.0 and Roche 454 Genome Sequencer FLX platforms. An initial evaluation, where the percentage ofoverlapping genes was observed, demonstrates higher reproducibility on microarray data in 10 out of 11 gene-ranking methods. A gene set enrichment analysis shows similar enrichment of top gene sets when NGS is compared with microarrays on a pathway level. Our novel approach demonstrates high accuracy of decision trees when used for knowledge extraction from multiple bootstrapped gene set enrichment analysis runs. A comparison of the two approaches in sample preparation for high-throughput sequencing shows that alternating decision trees represent the optimal knowledge representation method in comparison with classical decision trees. Conclusions Usual reproducibility measurements are mostly based on statistical techniques that offer very limited biological insights into the studied gene expression data sets. This paper introduces the meta-learning-based gene set enrichment analysis that can be used to complement the analysis of gene-ranking stabilityestimation techniques such as percentage of overlapping genes or classic gene set enrichment analysis. It is useful and practical when reproducibility of gene ranking results or different gene selection techniquesis observed. The proposed method reveals very accurate descriptive models that capture the co-enrichment of gene sets which are differently enriched in the compared data sets.
Ključne besede:meta-learning, microarray, gene expression analysis
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2010
Št. strani:str. 1-10
Številčenje:Letn. 11
PID:20.500.12556/DKUM-30836 Novo okno
ISSN:1471-2105
UDK:004.8
COBISS.SI-ID:1592996 Novo okno
DOI:10.1186/1471-2105-11-176 Novo okno
ISSN pri članku:1471-2105
NUK URN:URN:SI:UM:DK:HMHTHPG1
Datum objave v DKUM:05.06.2012
Število ogledov:4040
Število prenosov:342
Metapodatki:XML DC-XML DC-RDF
Področja:Ostalo
:
ŠTIGLIC, Gregor, BAJGOT, Mateja in KOKOL, Peter, 2010, Gene set enrichment meta-learning analysis: next-generation sequencing versus microarrays. BMC Bioinformatics [na spletu]. 2010. Vol. 11, p. 1–10. [Dostopano 27 april 2025]. DOI 10.1186/1471-2105-11-176. Pridobljeno s: https://dk.um.si/IzpisGradiva.php?lang=slv&id=30836
Kopiraj citat
  
Skupna ocena:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:BMC Bioinformatics
Založnik:BioMed Central
ISSN:1471-2105
COBISS.SI-ID:2433556 Novo okno

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:05.06.2012

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:meta-učenje, mikromreža, analiza izražanja genov


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici