Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Heronovi trikotniki in štirikotniki
Authors:
ID
Bunšek, Sabina
(Author)
ID
Pagon, Dušan
(Mentor)
More about this mentor...
Files:
UNI_Bunsek_Sabina_2009.pdf
(811,21 KB)
MD5: 944D6BD8A97F405D73525600AED62BE4
PID:
20.500.12556/dkum/dabdabe5-0d83-4d28-a8e5-7414f7f10c05
Language:
Slovenian
Work type:
Undergraduate thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
V diplomskem delu obravnavam Heronove trikotnike in štirikotnike, katerih stranice tvorijo aritmetično zaporedje. Opisana je tudi povezava med takšnimi trikotniki in pitagorejskimi trojicami. Pri iskanju ustreznih štirikotnikov sem uporabila teorijo racionalnih točk na eliptičnih krivuljah. V zadnjem poglavju sem podrobneje opisala še eliptične krivulje.
Keywords:
Heronov trikotnik
,
aritmetičen trikotnik
,
pitagorejske trojice
,
eliptična krivulja
Place of publishing:
Maribor
Publisher:
[S. Bunšek]
Year of publishing:
2009
PID:
20.500.12556/DKUM-9825
UDC:
51(043.2)
COBISS.SI-ID:
16751624
NUK URN:
URN:SI:UM:DK:TSEHZJVJ
Publication date in DKUM:
22.04.2009
Views:
3431
Downloads:
268
Metadata:
Categories:
PEF
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BUNŠEK, Sabina, 2009,
Heronovi trikotniki in štirikotniki
[online]. Bachelor’s thesis. Maribor : S. Bunšek. [Accessed 28 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=9825
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Smart grid cyber securiy
Cyber security in civil aviation
ǂThe ǂCOVID-19 impact to the cyber security in business environment
Review of the most common threats for web users
Drone cyber security
Similar works from other repositories:
MARITIME CYBER SECURITY CHALLENGES
Kibernetska varnost v avtomobilski industriji
Kibernetske grožnje nacionalni varnosti
MARITIME CYBER SECURITY AND ITS CHALLENGES
Analiza kibernetskih napadov v geopolitično izpostavljenih državah na območju Evrope v primerjavi s Slovenijo
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
Heron triangles and quadrilaterals
Abstract:
In my diploma paper I present Heron triangles and quadrilaterals, whose sides form an arithmetic progression. Our attention is also focused upon the correlation among those kinds of triangles and Pythagorean triples. In order to find relevant quadrilaterals I based my research on theory about rational points on elliptic curves. The last chapter is a detailed description of elliptic curves.
Keywords:
Heron triangles
,
arithmetic triangles
,
Pythagorean triples
,
elliptic curve
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back