| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Določanje uspešnosti počepa s pomočjo strojnega vida
Authors:ID Graj, Nejc (Author)
ID Fister, Iztok (Mentor) More about this mentor... New window
ID Vrbančič, Grega (Comentor)
Files:.pdf VS_Graj_Nejc_2024.pdf (3,43 MB)
MD5: 0F41AF0095760FE4113B85DCE0672521
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V tem diplomskem delu bomo predstavili področje strojnega učenja, bolj specifično področje globokega učenja. V teoretičnem delu bomo prikazali, kako se je strojno učenje do sedaj že uporabljalo v športu, kako strojno in globoko učenje delujeta ter kako poteka proces učenja konvolucijskih nevronskih mrež. V praktičnem delu bomo ustvarili svojo učno množico in nato z algoritmom, ki je zasnovan na konvolucijskih nevronskih mrežah, ustvarili model, ki je zmožen določati uspešnost počepa po pravilih zveze za Powerlifting.
Keywords:strojni vid, globoko učenje, konvolucijske nevronske mreže, powerlifting
Place of publishing:Maribor
Publisher:[N. Graj]
Year of publishing:2024
PID:20.500.12556/DKUM-88841 New window
UDC:004.8796.88(043.2)
COBISS.SI-ID:220206083 New window
Publication date in DKUM:19.09.2024
Views:0
Downloads:27
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
GRAJ, Nejc, 2024, Določanje uspešnosti počepa s pomočjo strojnega vida [online]. Bachelor’s thesis. Maribor : N. Graj. [Accessed 27 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=88841
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:29.05.2024

Secondary language

Language:English
Title:Determining squat depth with the help of machine vision
Abstract:In this diploma thesis, we will delve into the field of machine learning, specifically focusing on the area of deep learning. In the theoretical part, we will examine how machine learning has been until now used in sports and as well as how machine learning, deep learning, and the process of training convolutional neural networks work. In the practical part, we will create our own training dataset and use an algorithm based on convolutional neural networks to create a model capable of assessing the performance of a squat according to the rules of the International Powerlifting Federation.
Keywords:machine learning, deep learning, convolutional neural networks, powerlifting


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica