| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Primerjava modernih konvolucijskih nevronskih mrež na problemu segmentiranja slik : diplomsko delo
Authors:ID Dukarić, Ivana (Author)
ID Potočnik, Božidar (Mentor) More about this mentor... New window
Files:.pdf UN_Dukaric_Ivana_2024.pdf (3,19 MB)
MD5: F36F3EB22353DA2A6EF38EFC78EEA364
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu smo preučevali in analizirali rezultate arhitektur konvolucijskih nevronskih mrež na problemu binarne segmentacije. V teoretičnem delu smo preučili arhitekture konvolucijskih nevronskih mrež SegFormer, DeepLapV3+, Gated-SCNN, Segmenter, FastFCN in TopFormer. V praktičnem delu diplomskega dela smo mreže SegFormer, Segmenter, FastFCN in TopFormer učili segmentirati slike na podatkovnih množicah Cityscapes in ADE20K. Mreže smo učili binarne segmentacije vozil. Mrežo SegFormer smo še dodatno učili na problemu binarnega segmentiranja ljudi. Dobljene rezultate smo analizirali in jih ovrednotili z evalvacijskimi metrikami. Za ocenjevanje uspešnosti smo uporabili metrike točnost, priklic, natančnost, IoU in F1 oceno. Najboljše rezultate za problem binarnega segmentiranja vozil smo dobili s pomočjo mreže SegFormer na podatkovni zbirki Cityscapes. Na podatkovni zbirki ADE20K smo za enak problem segmentacije dobili najboljše rezultate za mrežo Segmenter. Najslabše sta se izkazali mreža TopFormer na podatkovni zbirki Cityscapes in mreža FastFCN na podatkovni zbirki ADE20K.
Keywords:binarna segmentacija, konvolucijske nevronske mreže, primerjava mrež, evalvacijske metrike, računalniški vid
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[I. Dukarić]
Year of publishing:2024
Number of pages:1 spletni vir (1 datoteka PDF (XI, 52 f.))
PID:20.500.12556/DKUM-87741 New window
UDC:004.032.26:004.932(043.2)
COBISS.SI-ID:195250691 New window
Publication date in DKUM:26.04.2024
Views:359
Downloads:66
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:27.03.2024

Secondary language

Language:English
Title:Comparison of modern convolutional neural networks for image segmentation
Abstract:In the thesis we studied and analysed the results of convolutional neural network architectures on the problem of binary segmentation. In the theoretical part we studied the architectures of convolutional neural networks SegFormer, DeepLapV3+, Gated-SCNN, Segmenter, FastFCN, and TopFormer. In the practical part of the thesis we trained the SegFormer, Segmenter, FastFCN and TopFormer networks to segment images on the Cityscapes and ADE20K datasets. We trained the network for binary segmentation. Additionally we trained the SegFormer network on the problem of binary human segmentation. The obtained results were analysed and evaluated using evaluation metrics. We used the metrics accuracy, recall, precision, IoU and F1 score to evaluate performance. The best results for the binary vehicle segmentation problem were obtained using the SegFormer network on the Cityscapes database. On the ADE20K database we obtained the best results for the Segmenter network for the same segmentation problem. The TopFormer network performed the worst on the Cityscapes dataset, while the FastFCN network performed the worst on the ADE20K dataset.
Keywords:binary segmentation, convolutional neural networks, network comparison, evaluation metrics, computer vision


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica