Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Značilnost okolja Kuberflow : diplomsko delo
Authors:
ID
Krasnič, Domen
(Author)
ID
Novak, Bojan
(Mentor)
More about this mentor...
Files:
VS_Krasnic_Domen_2021.pdf
(2,80 MB)
MD5: 95855DC1FA61599923C72B515036D9E2
PID:
20.500.12556/dkum/4b1fb7e4-688f-46ce-8f00-d10a9aa79a3f
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V današnjih modernih časih je vedno več podatkov, ki nam omogočajo lažje odločitve. Iz različnih podatkov pridobimo različne informacije in vzorce, pomembne za našo prihodnost. Zaradi vse večjih količin podatkov so se razvile številne rešitve za obravnavo le-teh. Ena izmed rešitev, ki se je razvila, je strojno učenje, ki ima sposobnost reševanja kompleksnih problemov z različnih področij. V diplomskem delu je predstavljeno Kubeflow okolje in tematika, tesno povezana z njim.
Keywords:
Kubeflow okolje
,
strojno učenje
,
Kubernetes
Place of publishing:
Maribor
Place of performance:
Maribor
Publisher:
[D. Krasnič]
Year of publishing:
2021
Number of pages:
VI, 43 str.
PID:
20.500.12556/DKUM-79996
UDC:
004.85(043.2)
COBISS.SI-ID:
90233603
Publication date in DKUM:
18.10.2021
Views:
1335
Downloads:
105
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KRASNIČ, Domen, 2021,
Značilnost okolja Kuberflow : diplomsko delo
[online]. Bachelor’s thesis. Maribor : D. Krasnič. [Accessed 28 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=79996
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Pebax©/Polyethlylene glycol blend thin film composite membranes for CO2 separation
Membranska separacija plinov
Proizvodnja transportnega goriva iz bioplina
Membranska separacija
Some aspects of polymeric asymmetric porous membranes formation by phase separation method
Similar works from other repositories:
Membrane za ločevanje CO [sub] 2 iz plinskih zmesi
Razvoj membranskega mikroseparatorja
Industrijska membranska filtracija surovega vodikovega peroksida
Tehnike PEGilacije proteinov
Nanofiltracija poliamidamin-epiklorohidrinskih smol z namenom zmanjševanja vsebnosti nevarnih snovi
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
25.08.2021
Secondary language
Language:
English
Title:
Kubeflow environment
Abstract:
In these modern times, there is more and more data to help us make better decisions. Different data provide different information and patterns that are relevant for our future. The increasing volume of data has led to the development of a number of solutions to deal with it. One solution that has been developed is machine learning, which has the ability to solve complex problems in a variety of fields. The thesis presents the Kubeflow environment and the topics closely related to this environment.
Keywords:
Kubeflow environment
,
machine learning
,
Kubernetes
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back