Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
UPORABA ANALITIČNIH PRISTOPOV PRI ODKRIVANJU PREVAR V RAČUNOVODSKIH IZKAZIH
Authors:
ID
Dobaja, Rebeka
(Author)
ID
Kolar, Iztok
(Mentor)
More about this mentor...
Files:
MAG_Dobaja_Rebeka_2021.pdf
(2,27 MB)
MD5: FD69AE6A490C9C8A543262758D323FC1
PID:
20.500.12556/dkum/3b462e71-b5d3-477c-8149-5e083f8d7487
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
EPF - Faculty of Business and Economics
Abstract:
Računovodske prevare in še posebej prevarantsko poročanje so pereč problem, ki predstavljajo trn v peti revizorjev, investitorjem, forenzičnim računovodjem in vsem drugim, ki sprejemajo odločitve o obravnavanem podjetju. Na prvi pogled je precej težko oceniti, ali podjetje resnično in pošteno prikazuje svoje poslovanje skozi računovodske izkaze in poslovno poročilo. Zato so se v praksi uveljavile različne tehnike, načini, pristopi, ki odločevalcem omogočajo pridobitev informacij na drugačen način, s tem pa bodo ocenili verjetnost, ali podjetje prevarantsko poroča ali ne. Cilj magistrske naloge je preučiti analitične pristope, njihove sestavne dele, izračune in interpretacijo rezultatov ter le-to uporabiti na primeru podjetja, ki verjetno ni manipulator, in na primeru podjetja, ki verjetno je manipulator. Uporabljena modela sta nam podala rezultate in informacije, s katerimi smo lahko potrdili že znana dejstva o podjetjih, predstavili informacijo za tiste, ki se o obravnavanem podjetju odločajo in sprejemajo odločitve, ter primerjali razlike in podobnosti dobljenih končnih rezultatov za tekoče leto in še za štiri pretekla leta med dvema različnima podjetjema. Za podjetje X smo na podlagi modela M-vrednosti in modela C-vrednosti ugotovili, da z veliko verjetnostjo ni manipulator, za podjetje Y pa smo na podlagi istih modelov ugotovili, da je večja verjetnost, da je podjetje Y manipulator, posledično pa so računovodski izkazi prikrojeni. To smo ugotovili predvsem za leto 2017 in 2020 na podlagi modela M-vrednosti, na podlagi modela C-vrednosti pa zgolj za leto 2020. Po opravljenih preučevanjih modelov in analitičnih pristopov ugotavljamo, da modeli niso povsem zanesljivi, pa vendar bi lahko odločevalcem lahko pravilno sugerirali pri sprejemanju odločitev oziroma vsaj pri ocenjevanju tveganosti sprejema odločitve glede obravnavanega podjetja.
Keywords:
Računovodske prevare
,
prevarantsko poročanje
,
upravljanje s tveganji
,
Beneish model M-vrednosti
,
Montier model C-vrednosti
Place of publishing:
[Maribor
Publisher:
R. Dobaja
Year of publishing:
2021
PID:
20.500.12556/DKUM-79974
UDC:
657.6:343.721
COBISS.SI-ID:
81868035
Publication date in DKUM:
21.10.2021
Views:
1062
Downloads:
164
Metadata:
Categories:
EPF
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
DOBAJA, Rebeka, 2021,
UPORABA ANALITIČNIH PRISTOPOV PRI ODKRIVANJU PREVAR V RAČUNOVODSKIH IZKAZIH
[online]. Master’s thesis. Maribor : R. Dobaja. [Accessed 23 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=79974
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Jeklena hala 35 x 48 m s paličnimi nosilci na polnostenskih stebrih iz jekla Fe 360 in mostnim žerjavom nosilnosti 100 kN
Jeklena hala 35 X 48 m s paličnimi nosilci na polnostenskih stebrih iz jekla Fe 510 in mostnim žerjavom nosilnosti 100 KN
Jeklena hala 35 x 46 m s paličnimi nosilci na polnostenskih stebrih iz jekla Fe 430 in mostnim žerjavom nosilnosti 100 KN
Jeklena hala 25 X 48 m s paličnimi nosilci in stebri iz jekla Fe 360 in mostnim žerjavom nosilnosti 100 KN
Jeklena hala 40 X 48 m s paličnimi nosilci na stebrih iz jekla Fe 430 in mostnim žerjavom nosilnosti 100 KN
Similar works from other repositories:
Object detection and classification in aquatic environment using convolutional neural networks
Iris recognition using deep learning
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Automatic image captioning using deep neural networks
Image-to-image translation through generative adversarial networks
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
24.08.2021
Secondary language
Language:
English
Title:
APPLICATION OF ANALYTICAL APPROACHES IN DETECTING FRAUD IN THE FINANCIAL STATEMENTS
Abstract:
Accounting fraud and especially fraudulent reporting are a burning issue tasking auditors, investors, forensic accountants, and all others who make decisions about the company in question. At first glance, it is quite difficult to assess whether a company is truly and fairly presenting its business through financial statements and a business report. To this end, different techniques, methods, and approaches have been established in practice. All that enables decision-makers to obtain information in a different way. Thus, they will assess the probability of whether the company is fraudulently reporting or not. The goal of the master's thesis is to examine analytical approaches, their components, calculations, and interpretation of results, as well as to apply them in the case of a company that is unlikely to be a manipulator and in the case of a company that is likely to be a manipulator. The used models gave us results and information with which we could confirm already known facts about companies, present information for those who decide and make decisions about the company in question, and compare the differences and similarities of the final results for the current year and also four more previous years between two different companies. Based on the M-Score model and the C-Score model, we ascertained with a high probability for company X that it is not a manipulator. Also based on the M-Score model and the C-Score model, we ascertained for company Y that there is a higher probability that company Y is a manipulator. Consequently, the financial statements are tailored. We ascertained this mainly for 2017 and 2020 on the basis of the M-Score model. On the other hand, we ascertained this only for the year 2020 on the basis of the C-Score model. After studying the models and analytical approaches, we find that the models are not completely reliable. However, we could correctly suggest to decision-makers when making decisions or, at least, when assessing the risk of making decisions about the company in question.
Keywords:
Accounting Fraud
,
Fraudulent reporting
,
Risk management
,
Beneish M-Score model
,
Montier’s C-Score model.
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back