| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Adversarna motnja razpoznave slik nevronske mreže s pomočjo evolucijskega algoritma : diplomsko delo
Authors:ID Kukovec, Rok (Author)
ID Karakatič, Sašo (Mentor) More about this mentor... New window
ID Fister, Iztok (Comentor)
Files:.pdf UN_Kukovec_Rok_2021.pdf (5,61 MB)
MD5: E0869F13ECED2B2D5059AB2445338DFE
PID: 20.500.12556/dkum/56ed871e-cbeb-4e16-a0ba-6a15cb97cb39
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Uspešnost prepoznavanja slik z uporabo nevronskih mrež je odvisna od parametrov in filtrov, optimiziranih skozi učni proces. Tukaj najdemo razliko v načinu prepoznavanja motivov med ljudmi in stroji. Pojavi se vrzel, ki jo napadalec s pomočjo adversarnih motenj lahko izkoristi. Slike so na videz neopazno spremenjene, ljudje razlike težko zaznajo, vendar klasifikacija nevronske mreže odpove. To delo raziskuje poustvarjanje slik z evolucijskim algoritmom. Konvolucijska nevronska mreža AlexNet po spremembi ne more prepoznati predhodno jasnih motivov. Človeku prepoznavna slika se ohrani. Pari izvirnih in poustvarjenih slik so bili primerjani z uporabo vizualne ocene in statističnih metrik.
Keywords:adversarna motnja, evolucijski algoritmi, konvolucijske nevronske mreže, računalniški vid
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[R. Kukovec]
Year of publishing:2021
Number of pages:XIII, 68 str.
PID:20.500.12556/DKUM-79575 New window
UDC:004.932:004.8.021(043.2)
COBISS.SI-ID:79865859 New window
Publication date in DKUM:24.08.2021
Views:1578
Downloads:176
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
KUKOVEC, Rok, 2021, Adversarna motnja razpoznave slik nevronske mreže s pomočjo evolucijskega algoritma : diplomsko delo [online]. Bachelor’s thesis. Maribor : R. Kukovec. [Accessed 14 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=79575
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:23.07.2021

Secondary language

Language:English
Title:Adversarial perturbation on neural network image recognition using an evolutionary algorithm
Abstract:Neural networks used for image recognition heavily depend on filters and parameters optimized throughout the learning process. The difference between the way people and machines see and recognize everyday objects emerge and an attacker can use it to their advantage. The images are seemingly imperceptibly altered so that people have difficulties detecting the changes, but the classification of the neural network fails. This work explores recreating images using an evolutionary algorithm. Convolutional neural network Alexnet no longer recognizes previously clear motifs. The human recognizable image is preserved. Pairs of original and recreated images were compared using visual estimation and statistical metrics.
Keywords:Adversarial perturbation, Convolutional neural network, Avolutional algorithms, Machine vision


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica