Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Razvoj klasifikacijskega modela za računalniško opremo
Authors:
ID
Perko, Bojan
(Author)
ID
Kljajić Borštnar, Mirjana
(Mentor)
More about this mentor...
Files:
MAG_Perko_Bojan_2021.pdf
(2,09 MB)
MD5: 4D555E6B2B480774C54823E91DC64A1A
PID:
20.500.12556/dkum/20410870-f8f1-4b46-9f17-7cc6bca625fa
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FOV - Faculty of Organizational Sciences in Kranj
Abstract:
Zaključna naloga obravnava načrtovanje in razvoj celovite rešitve, ki vključuje razvoj več razrednega klasifikacijskega modela in razvoj modelov razvrščanja v skupine z uporabo strojnega učenja. Glavni namen rešitve je nadomestitev ročnega uvrščanja podatkov o računalniških izdelkih v vnaprej določene skupine izdelkov, in sicer z avtomatizirano celovito rešitvijo, katere namen je izboljšanje procesa izračuna indeksa cen življenjskih potrebščin. Izdelki, razvrščeni v skupine, so namreč osnova za zajem podatkov pri izračunu indeksa cen življenjskih potrebščin, ki se uporablja za merilo inflacije. Rešitev smo razvili po metodologiji CRISP-DM, z uporabo različnih tehnologij, in sicer relacijske podatkovne baze Microsoft SQL Server, ogrodja .NET Core, ogrodja ML.NET in programskega jezika C#. Rezultat zaključnega dela je celovita rešitev, ki omogoča samodejno izvajanje napovedi oziroma klasifikacije podatkov o računalniških izdelkih ter v nadaljevanju združevanje teh podatkov v homogene skupine, hkrati pa preko aplikacijskega vmesnika uporabnikom omogoča nadzor nad izvajanjem delovanja rešitve. Rešitev, ki smo jo razvili v zaključni nalogi, pripomore k bolj konsistentni, kakovostni in učinkoviti obdelavi podatkov ter s tem olajša delo pri naročniku. Možnosti nadaljnjega razvoja se kažejo v več segmentih, pri čemer je bistvenega pomena uporaba večje količine podatkov in s tem bolj natančna klasifikacija.
Keywords:
strojno učenje
,
klasifikacija
,
gručenje
,
ML.NET
,
podatkovna baza
Place of publishing:
Maribor
Year of publishing:
2021
PID:
20.500.12556/DKUM-79339
COBISS.SI-ID:
73305091
Publication date in DKUM:
18.08.2021
Views:
1337
Downloads:
82
Metadata:
Categories:
FOV
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PERKO, Bojan, 2021,
Razvoj klasifikacijskega modela za računalniško opremo
[online]. Master’s thesis. Maribor. [Accessed 23 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=79339
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Ocenjevanje uspešnosti nabave v podjetju
Supply chain cybermastery
Improvement of procurement process in selected company
Analysis of the purchasing function in Eurel d.o.o.
Purchasing management in Vobo company
Similar works from other repositories:
Analiza nabavnega poslovanja v podjetju Silkem, d. o. o.
Analiza nabave v proizvodnem podjetju Gradnje X
Ustanovitev vrtca v podjetju
Pomen strateške nabave za uresničevanje strategij in uspešnost podjetja
Analiza nabavne politike v podjetju
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
14.06.2021
Secondary language
Language:
English
Title:
Development of computer hardware classification model
Abstract:
This Master'sthesis deals with the design and development of a comprehensive solution, which includes the development of a multi-class classification model and the development of clustering models using machine learning. The main purpose of the solution is to replace the manual data classification of computer products into predefined product groups with an automated comprehensive solution, the purpose of which is to improve the process of calculating the consumer price index. Products classified into groups are the basis for calculation of the consumer price index, which is used as a measure of inflation. The solution was developed according to the CRISP-DM methodology. Using a variety of technologies, namely the Microsoft SQL Server relational database, the .NET Core framework, the ML.NET framework, and the C # programming language. The result is a comprehensive solution that enables the automatic implementation of forecasts or classification of data on computer products and further aggregation of this data into homogeneous groups. At the same time, it allows the user to manage and control the operation of the solution through the user interface. The solution we developed in the final Master's thesis contributes to a more consistent, high-quality and efficient data processing, thus facilitating the work of the client. The possibilities for further development are reflected in several segments, with the use of a larger amount of data being essential and thus a more accurate classification.
Keywords:
machine learning
,
classification
,
clustering
,
ML.NET
,
database
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back