Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Klasifikacija besedila s prenosnim učenjem : magistrsko delo
Authors:
ID
Žerak, Jure
(Author)
ID
Karakatič, Sašo
(Mentor)
More about this mentor...
Files:
MAG_Zerak_Jure_2020.pdf
(1,99 MB)
MD5: 7C9C0FF29C1B8078C99A4AF3BC808FF8
PID:
20.500.12556/dkum/f31311e4-f917-41e0-8bdd-03fcc3752859
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Magistrsko delo ima namen preizkusiti metodo prenosnega učenja na obdelavi naravnega jezika in jo primerjati s klasičnimi metodami učenja nevronskih mrež, metodo LSTM. V delu sta uporabljena opisna metoda za teoretični in eksperiment za praktični del dela. V slednjem smo ugotovili, da je metoda prenosnega učenja na majhni količini podatkov bolj točna od klasičnih metod, vendar za to potrebuje več časa. Delo primerja prednaučeni model Bert in klasično metodo LSTM, zato je priporočljivo primerjati rezultate tudi z drugimi prednaučenimi modeli in klasičnimi metodami.
Keywords:
nevronske mreže
,
prenosno učenje
,
NLP
,
PyTorch
,
LSTM
Place of publishing:
Maribor
Place of performance:
Maribor
Publisher:
[J. Žerak]
Year of publishing:
2020
Number of pages:
IX, 64 f.
PID:
20.500.12556/DKUM-78108
UDC:
004.85(043.2)
COBISS.SI-ID:
44103683
NUK URN:
URN:SI:UM:DK:VRY2V0LQ
Publication date in DKUM:
01.12.2020
Views:
932
Downloads:
116
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŽERAK, Jure, 2020,
Klasifikacija besedila s prenosnim učenjem : magistrsko delo
[online]. Master’s thesis. Maribor : J. Žerak. [Accessed 31 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=78108
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Določitev parametrov procesa anaerobno-aerobnega čiščenja odpadne vode in hidrolize odpadnega biološkega blata Vipap Videm Krško
Similar works from other repositories:
Ogljični odtis v Biotehniškem centru Naklo
Možnosti kompostiranja blata iz industrijske čistilne naprave
Ocena preiskusnega delovanja centralne čistilne naprave Slovenj Gradec
Problematika delovanja centralne čistilne naprave Domžale Kamnik
Kontroler količine blata na industrijskih čistilnih napravah
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
27.10.2020
Secondary language
Language:
English
Title:
Classification of text using transfer learning
Abstract:
The aim of this Master's thesis is to test the method of transfer learning with natural language processing and to compare it to a standard neural network model, namely LSTM. The thesis is using the descriptive method for the theoretical part and experimental method for the practical part. In the experiment we have discovered that, while transfer learning is more accurate than the standard model, it is also slower in the learning process. The thesis compares only the pretrained model Bert and standard model LSTM and that is why it is recommended to also check other pretrained models and standard models for comparison.
Keywords:
neural networks
,
transfer learning
,
NLP
,
PyTorch
,
LSTM
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back