| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Razpoznavanje človeških emocij na digitalnih posnetkih s pomočjo konvolucijskih nevronskih mrež : magistrsko delo
Authors:ID Pernat, Aleš (Author)
ID Potočnik, Božidar (Mentor) More about this mentor... New window
Files:.pdf MAG_Pernat_Ales_2020.pdf (1,30 MB)
MD5: 186F081048500A803185B3896F665759
PID: 20.500.12556/dkum/0ef005c9-1b9a-4a2c-8dff-3edc8bf61018
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V magistrskem delu smo se ukvarjali z razvrščanjem šestih osnovnih človeških emocij in nevtralnega izraza s pomočjo digitalnih posnetkov in konvolucijskih nevronskih mrež. Pregledali smo področje razpoznavanja človeških emocij in natančno preučili konvolucijske nevronske mreže. Implementirali smo več modelov sodobnih konvolucijskih nevronskih mrež, ob tem pa razvili tudi lastne modele. Uporabili smo knjižnico Tensorflow in programski jezik Python. Naše predlagane rešitve smo preizkusili na prosto dostopnih podatkovnih zbirkah CK+, MMI in JAFFE. Slike iz podatkovnih zbirk smo obogatili z zrcaljenjem in rotiranjem, tako da smo dobili večjo količino podatkov. Za validiranje smo uporabili pristop, neodvisen od subjekta, in petkratno navzkrižno validacijo. Najboljši rezultati razvrščanja z našimi predlaganimi metodami so bili 91,65 % na zbirki CK+, 59,08 % na zbirki MMI in 67,86 % na zbirki JAFFE. Rezultati na zbirki CK+ so primerljivi z rezultati sorodnih del, na preostalih dveh zbirkah pa je uspešnost razvrščanja z našimi pristopi bistveno slabša od rezultatov sorodnih del.
Keywords:človeške emocije, konvolucijske nevronske mreže, digitalne slike, strojno učenje
Place of publishing:Maribor
Place of performance:Maribor
Publisher:[A. Pernat]
Year of publishing:2020
Number of pages:VII, 42 f.
PID:20.500.12556/DKUM-78093 New window
UDC:004.932.8\'1:316.642.2(043.2)
COBISS.SI-ID:47995651 New window
NUK URN:URN:SI:UM:DK:M0NZJDPO
Publication date in DKUM:04.01.2021
Views:1297
Downloads:116
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
PERNAT, Aleš, 2020, Razpoznavanje človeških emocij na digitalnih posnetkih s pomočjo konvolucijskih nevronskih mrež : magistrsko delo [online]. Master’s thesis. Maribor : A. Pernat. [Accessed 23 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=78093
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:22.10.2020

Secondary language

Language:English
Title:Recognition of human emotions on digital images using convolutional neural networks
Abstract:In the master's thesis, we dealt with the classification of six basic human emotions and the neutral expression on digital images using convolutional neural networks. We reviewed the field of human emotion recognition and examined convolutional neural networks. We implemented several existing models of convolutional neural networks and also developed our own models. We used the Tensorflow library and the Python programming language. We tested our solutions on freely accessible CK +, MMI and JAFFE databases. The images from the databases were augmented by mirroring and rotating the images in order to obtain a larger amount of data. We used a subject-independet aproach for validation and 5-fold cross validation. The best classification results with our proposed methods were 91,65 % on the CK+ database, 59,08 % on the MMI database and 67,68% on the JAFFE database. The results on the CK+ database are comparable to the results of related works, while on the other two databases the success of the classification with our best approaches is significantly worse than the results of related works.
Keywords:Human emotions, convolutional neural networks, digital images, machine learning


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica