| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Selektivno zaznavanje in odstranjevanje plevela
Authors:ID Kenda, Urban (Author)
ID Uran, Suzana (Mentor) More about this mentor... New window
ID Bratina, Božidar (Comentor)
ID Rakun, Jurij (Comentor)
ID Belšak, Aleš (Mentor) More about this mentor... New window
Files:.pdf UN_Kenda_Urban_2020.pdf (3,75 MB)
MD5: 71EDC8BB3558589BE2F57F2CB0C243A9
PID: 20.500.12556/dkum/a0f65b96-98e9-489b-9c30-9bce57e53c66
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu smo spoznali robota Farmbeast, različne pristope k škropljenju, osnovne principe iz področja strojnega vida in uporabo robotskega operacijskega sistema. Na podlagi novopridobljenega znanja smo ustvarili sistem, ki je s strojnim vidom sposoben ločevati plevel med ozko- in širokolistnim plevelom. Rezultat prepoznave pa predstavlja vhodni podatek za novo razvito orodje, s katerim je omogočeno škropljenje z dvema različnima fitofarmacevtskima pripravkoma, glede na vrsto plevela. Za prepoznavo sta bila razvita dva različna algoritma, ki omogočata ločevanje plevela in sta bila testirana na 30 vzorcih. Test je pokazal, da prvi način v 93,3 % uspešno loči ozkolisten plevel in je 53,3 % uspešen pri ločevanju širokolistnega plevela, drugi način pa obe vrsti plevela loči 93,3 % uspešno.
Keywords:plevel, škropljenje, strojni vid
Place of publishing:Maribor
Publisher:[U. Kenda]
Year of publishing:2020
PID:20.500.12556/DKUM-77279 New window
UDC:621.865.8(043.2)
COBISS.SI-ID:38393347 New window
NUK URN:URN:SI:UM:DK:IKODU7ER
Publication date in DKUM:03.11.2020
Views:990
Downloads:147
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
KENDA, Urban, 2020, Selektivno zaznavanje in odstranjevanje plevela [online]. Bachelor’s thesis. Maribor : U. Kenda. [Accessed 22 January 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=77279
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:25.08.2020

Secondary language

Language:English
Title:Selective detection and removal of weed
Abstract:In this work we learn about robot Farmbeast, different approaches to spraying, basic principles in the field of machine vision and the use of a robotic operating system. Based on new knowledge, we created a system which is able to separate weeds into narrow and wide-leaf sort with machine vision. The result of defining weed sort is used as input data for newly developed tool, which is capable of spraying two different phytopharmaceutical preparations, depending of the type of weed. For defining weed, two different weed separating algorithms were developed and tested on 30 samples. The test showed that first method successfully separates the narrow sort in 93,3 % and is 53,3 % successful in separating wide sort weeds. The second algorithm both of sorts separate correctly in 93,3 %.
Keywords:weeds, spraying, machine visions


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica