Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Klasifikacija časovnih vrst s konvolucijskimi nevronskimi mrežami : magistrsko delo
Authors:
ID
Kavran, Domen
(Author)
ID
Lukač, Niko
(Mentor)
More about this mentor...
Files:
MAG_Kavran_Domen_2020.pdf
(10,95 MB)
MD5: 69887BA0950FDECFD0B024F1071691DC
PID:
20.500.12556/dkum/2c8d4371-4cd1-433d-ad74-5b9ec2a2c065
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V magistrskem delu predstavimo klasifikacijo časovnih vrst z uporabo konvolucijskih nevronskih mrež. Klasifikacija je izvedena nad časovno-frekvenčnimi predstavitvami časovnih vrst, ki so pridobljene z različnimi metodami časovno-frekvenčne analize. Zasnovali smo več arhitektur konvolucijskih nevronskih mrež za klasifikacijo časovnih vrst. Optimizacijski algoritmi za učenje konvolucijskih nevronskih mrež so uporabljali napredno izgubno funkcijo, imenovano žariščna izguba. Za najuspešnejšo metodo izračuna časovno-frekvenčnih predstavitev časovnih vrst se je izkazala zvezna valčna transformacija, s katero smo dosegli povprečno natančnost klasifikacije 90,07 %. Združitev različnih časovno-frekvenčnih predstavitev je izboljšala povprečno natančnost klasifikacije na 92,01 %.
Keywords:
klasifikacija
,
globoko učenje
,
konvolucijske nevronske mreže
,
časovne vrste
,
časovno-frekvenčna analiza
Place of publishing:
Maribor
Place of performance:
Maribor
Publisher:
[D. Kavran]
Year of publishing:
2020
Number of pages:
X, 64 f.
PID:
20.500.12556/DKUM-76273
UDC:
004.85:519.246.8(043.2)
COBISS.SI-ID:
27221763
NUK URN:
URN:SI:UM:DK:JQOIK3AA
Publication date in DKUM:
03.07.2020
Views:
1883
Downloads:
242
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KAVRAN, Domen, 2020,
Klasifikacija časovnih vrst s konvolucijskimi nevronskimi mrežami : magistrsko delo
[online]. Master’s thesis. Maribor : D. Kavran. [Accessed 22 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=76273
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Študija primera pacienta s celiakijo
Obravnava pacienta po odstranitvi želodca
Zdravstvena nega bolnika z akutnim pankreatitisom
Kardiomiopatija pri jetrni cirozi
Osveščenost mladostnikov o celiakiji
Similar works from other repositories:
Kronična bolezen in življenjski stil
Patients' adherence to treatment of diabetes mellitus
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
05.05.2020
Secondary language
Language:
English
Title:
Time series classification based on convolutional neural networks
Abstract:
This master’s thesis presents time series classification using convolutional neural networks. Classification is performed on time-frequency representations of time series, which are obtained by using different time-frequency analysis methods. Several convolutional neural network architectures for time series classification were designed. Optimization algorithms for learning convolutional neural networks used advanced loss function, called focal loss. The most successful method for computing time-frequency representations of time series has proven to be a continuous wavelet transform, which achieved an average classification accuracy of 90,07 %. Combining various time-frequency representations increased average classification accuracy to 92,01 %.
Keywords:
classification
,
deep learning
,
convolutional neural networks
,
time series
,
time-frequency analysis
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back