| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Večkriterijska optimizacija terminiranja proizvodnje po naročilu z uporabo hibridnega metahevrističnega algoritma : doktorska disertacija
Authors:Ojsteršek, Robert (Author)
Buchmeister, Borut (Mentor) More about this mentor... New window
Brezočnik, Miran (Co-mentor)
Files:.pdf DOK_Ojstersek_Robert_2020.pdf (6,65 MB)
MD5: 0515F43AAFB03B800CA43C410E8D03EC
 
Language:Slovenian
Work type:Doctoral dissertation (mb31)
Typology:2.08 - Doctoral Dissertation
Organization:FS - Faculty of Mechanical Engineering
Abstract:Težišče proizvodnje se vse bolj nagiba od masovne proizvodnje k proizvodnji po željah kupca, torej k proizvodnji po naročilu. Načrtovanje in vodenje takšne proizvodnje je v konkurenčnih pogojih poslovanja izjemnega pomena. Kratki pretočni časi naročil, visoka zanesljivost dobavnih rokov, nizke zaloge, trajnostna naravnanost in ugoden vrednostno-časovni profil, vezan na tok vrednosti, postajajo ključni proizvodni cilji, ki jih lahko dosežemo le z ustreznim terminskim planiranjem. Stohastični prihodi naročil in različna zaporedja ter obseg obdelav pri naročilih lahko povzročijo zelo neenakomerno zasedenost kapacitet, kar privede do velikega raztrosa pretočnih časov operacij in odstopanj dobavnih rokov. Disertacija obravnava terminiranje proizvodnje po naročilu z uporabo hibridne metahevristične metode evolucijskega računanja tako, da rešuje obravnavan problem večkriterijske optimizacije z uporabo nove metode evolucijskega računanja, prilagodljivim simulacijskim modelom in ustrezno ovrednotenim vrednostno-časovno-prilagodljivostnim diagramom. Z analizo numeričnih in simulacijskih eksperimentov je dokazana visoka zmožnost reševanja optimizacijskih problemov, kjer optimizacijske rešitve predlaganega algoritma dokazujejo primerljivost z rešitvami dveh aktualno najuspešnejših algoritmov. Predstavljena je nova metoda prenosa optimizacijskih rezultatov v simulacijski model, ki omogoča popolno prilagodljivost in avtomatiziran vnos vhodnih parametrov, tako testnih kot realnih podatkov proizvodnih sistemov. Celovit optimizacijski pristop je ovrednoten z novo metodo vrednostno-časovno-prilagodljivostnega diagrama, ki omogoča podrobno analizo in potrditev ustreznosti rezultatov predlaganega optimizacijskega algoritma in simulacijskega modela. Kot dokaz zmožnosti reševanja realnih optimizacijskih problemov je v zaključnem poglavju predstavljena validacija celotnega pristopa na podatkih realnega proizvodnega sistema, kjer je potrjeno osnovno raziskovalno vprašanje pomembnosti večkriterijske optimizacije proizvodnje po naročilu.
Keywords:terminiranje proizvodnje po naročilu, večkriterijska optimizacija, hibridni metahevristični algoritem, simulacijsko modeliranje, vrednostno-časovno-prilagodljivostni diagram, trajnostna proizvodnja
Year of publishing:2020
Place of performance:Maribor
Publisher:[R. Ojsteršek]
Number of pages:XIX, 153 str.
Source:Maribor
UDC:658.5:004.942(043.3)
COBISS_ID:38376707 New window
NUK URN:URN:SI:UM:DK:CAEMMSCD
Views:207
Downloads:67
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FS
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:04.05.2020

Secondary language

Language:English
Title:Multi-criteria optimization of flexible job shop scheduling problem with hybrid metahevristic algorithm
Abstract:The focus of production systems optimization is moving increasingly from mass production to mass customization or make-to-order manufacturing. Production planning and scheduling of such production systems is very important, due to competitive business conditions. Short flow times of orders, high reliability of delivery dates, low stocks, sustainable manufacturing, high flexibility and a favourable cost-time profile, linked to the manufacturing value flow, are becoming the key production goals. They can be achieved mainly with appropriate multi-objective production optimization. Stochastic orders arrivals, different sequences and different production volume of orders, can lead to a very uneven capacity utilization, resulting in a longer flow time of operations and in the deviation of delivery dates. The dissertation deals with the flexible job shop production scheduling using the hybrid metaheuristic method of evolutionary computation for solving the problem of multi-objective optimization with a new method of evolutionary computation, adaptive simulation models and appropriately evaluated cost-time-flexibility diagrams. By analysing numerical and simulation experiments, it was demonstrated a high ability to solve optimization problems where the optimization solutions of the proposed algorithm prove the comparability with the solutions of the two currently most successful algorithms. A new method of transferring optimization results to a simulation model is presented, enabling full flexibility and automated input of production system parameters, used for both test and real production systems data. The comprehensive optimization approach is evaluated by a new method of cost-time-flexibility diagram, which allows detailed analysis and confirmation of the proposed optimization algorithm and simulation model results adequacy. As a proof of the ability to solve real optimization problems, the final chapter presents the validation of the whole approach on the real production system data, where the basic research question of the multi-objective flexible production system optimization importance has been confirmed.
Keywords:flexible job shop scheduling problem, multi-objective optimization, hybrid metaheuristic algorithm, simulation modelling, Cost-Time-Flexibility profile (CTFP), sustainable manufacturing


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica