Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Napovedovanje porabe električne energije z rekurentnimi nevronskimi mrežami : magistrsko delo
Authors:
ID
Kos, Urban
(Author)
ID
Karakatič, Sašo
(Mentor)
More about this mentor...
Files:
MAG_Kos_Urban_2020.pdf
(7,12 MB)
MD5: C50D4E8183550B0BB18AE99864FB3F85
PID:
20.500.12556/dkum/42f659af-3439-49ce-a8ce-560b12772cc4
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Predvidevanje porabe električne energije predstavlja zelo pomemben člen v elektroenergetski industriji, saj lahko pripomore k optimizaciji proizvodnje. S pomočjo strojnega učenja, natančneje rekurentnih nevronskih mrež, je mogoče natančno napovedati električno energijo. Veliko vlogo pri napovedovanju igrajo kakovost in količina podatkov ter arhitektura in nastavitve nevronske mreže. V teoretičnem delu je podrobno opisana nevronska mreža in njeni osnovni gradniki, kjer je bilo največ pozornosti posvečene rekurentnim mrežam, praktični del pa prikazuje izvedbo eksperimenta napovedovanja porabe električne energije z rekurentnimi nevronskimi mrežami z različno arhitekturo in podatki.
Keywords:
rekurentne nevronske mreže
,
električna energija
,
napovedovanje električne energije
Place of publishing:
Maribor
Place of performance:
Maribor
Publisher:
[U. Kos]
Year of publishing:
2020
Number of pages:
XII, 124 str.
PID:
20.500.12556/DKUM-76195
UDC:
[004.832:519.216]:621.31(043.2)
COBISS.SI-ID:
27115523
NUK URN:
URN:SI:UM:DK:1MSOEKSP
Publication date in DKUM:
03.07.2020
Views:
1541
Downloads:
165
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KOS, Urban, 2020,
Napovedovanje porabe električne energije z rekurentnimi nevronskimi mrežami : magistrsko delo
[online]. Master’s thesis. Maribor : U. Kos. [Accessed 2 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=76195
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Sveti Frančišek in njegov zaliv
Spremembe bivalnega okolja v Mežiški dolini
Svetlobno onesnaževanje v Slovenski Bistrici
Spremembe v gospodarski strukturi občine Celje po letu 1991
Transformacija mestnega središča v Murski Soboti
Similar works from other repositories:
Razvojne možnosti Kenije
Vizualna interpretacija letalskih posnetkov v GE Grosuplje
Geografija Podgrajskega podolja
Regionalni razvojni izzivi Jemna
Geografija občine Polzela
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
22.04.2020
Secondary language
Language:
English
Title:
Predicting power consumption with recurrent neural networks
Abstract:
The anticipation of electricity consumption represents a very important link in the electrical energy industry as it can help optimize production. With the help of machine learning, more precisely recurrent neural networks, electricity can be accurately predicted. The quality and quantity of data, as well as the architecture and settings of the neural network play a big role in forecasting. The theoretical part describes in detail the neural network and its basic building blocks, where the greatest attention was paid to the recurrent parts of the network and the practical part shows the implementation of an experiment for the prediction of electricity consumption with recurrent neural networks with different architecture and data.
Keywords:
recurrent neural networks
,
electricity
,
electricity forecasting
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back