Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
COBISS
Ekonomsko poslovna fakulteta
Fakulteta za kmetijstvo
Fakulteta za logistiko
Fakulteta za organizacijske vede
Fakulteta za varnostne vede
Fakulteta za zdravstvene vede
Knjižnica tehniških fakultet
Medicinska fakulteta
Miklošičeva knjižnica - FPNM
Pravna fakulteta
Univerzitetna knjižnica Maribor
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
Statistics
Login
First page
>
Show document
Show document
Title:
Analiza trga kriptovalut s postopki slepega ločevanja izvorov : magistrsko delo
Authors:
Mikolič, Jan
(Author)
Holobar, Aleš
(Mentor)
More about this mentor...
Files:
MAG_Mikolic_Jan_2020.pdf
(1,78 MB)
MD5: E1AAB835A9A649F5BE07C1D7B2FE2D95
Language:
Slovenian
Work type:
Master's thesis/paper (mb22)
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V magistrskem delu izvedemo analizo trga kriptovalut z metodami slepega ločevanja izvorov. Osredotočimo se na algoritma FastICA in SOBI. Preizkusimo različne vrednosti vhodnih parametrov in stroškovnih funkcij. Ugotovimo, da je algoritem SOBI s številom zakasnitev 400 primernejši, saj izkorišča časovno strukturo zgodovinskih cen kriptovalut. Na podlagi mešalnega modela kriptovalute gručimo v skupine, na katere vplivajo podobni dejavniki. Predstavimo model za napovedovanje cen kriptovalut na podlagi izračunanih neodvisnih komponent. Zaključimo z ugotovitvijo, da napovedovanje cen kriptovalut zgolj na podlagi zgodovinskih podatkov o cenah najverjetneje ni možno ne glede na napovedovalni model in predhodne transformacije.
Keywords:
kriptovalute
,
analiza neodvisnih komponent
,
slepo ločevanje izvorov
,
napovedovanje časovnih vrst
,
FastICA
,
SOBI
Year of publishing:
2020
Place of performance:
Maribor
Publisher:
[J. Mikolič]
Number of pages:
VIII, 49 str.
Source:
Maribor
UDC:
004.421:004.422.635(043.2)
COBISS_ID:
23070998
NUK URN:
URN:SI:UM:DK:41OYS4GY
Views:
569
Downloads:
110
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Average score:
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
AddThis uses cookies that require your consent.
Edit consent...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
16.01.2020
Secondary language
Language:
English
Title:
Cryptocurrency Market Analysis with Blind Source Separation Algorithms
Abstract:
In this master's thesis we perform cryptocurrency market analysis with blind source separation algorithms. We focus on algorithms FastICA and SOBI. Different input parameters and cost functions are tested. Algorithm SOBI with number of lags 400 proves to be the best choice as it exploits the time coherence of the cryptocurrency historical price data. Given the mixing model, we perform clustering and identify groups of cryptocurrencies which are under the influence of similar factors or sources. Further on, a forecasting model, based on calculated independent components, is presented. We conclude that cryptocurrency time series forecasting based on historical price data alone is most likely not possible, regardless of forecasting model or previous transformations used.
Keywords:
cryptocurrencies
,
independent component analysis
,
blind source separation
,
time series forecasting
,
FastICA
,
SOBI
Comments
Leave comment
You have to
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back