Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Uporaba strojnega učenja za napovedovanje škodnih dogodkov
Authors:
ID
Čoh, Vito
(Author)
ID
Jakovac, Marko
(Mentor)
More about this mentor...
ID
Harej, Bor
(Comentor)
Files:
MAG_Coh_Vito_2020.pdf
(1,53 MB)
MD5: 0773758FBFE80558ACCAE8E2E41AFD49
PID:
20.500.12556/dkum/9b55a56d-77eb-46f1-b7c5-12d0f613687b
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
V magistrskem delu je predstavljena uporaba posplošenega linearnega modela in različnih metod strojnega učenja v zavarovalništvu. Delo je razdeljeno na teoretični in praktični del. Na začetku teoretičnega dela so opisani osnovni pojmi iz verjetnosti in zavarovalništva. Predstavljeno je tudi, kako zavarovalnice določijo višino premije. Nato sta predstavljena teoretično ozadje posplošenega linearnega modela in uporaba tega modela za napovedovanje višine škode. Na koncu teoretičnega dela pa je opisano strojno učenje in bolj podrobno so predstavljena odločitvena drevesa, naključni gozdovi ter nevronske mreže. V praktičnem delu magistrskega dela pa so posplošeni linearni model, naključni gozd in nevronska mreža uporabljeni za napovedovanje višine škode pri avtomobilskem zavarovanju. Najprej so podatki predstavljeni ter ustrezno obdelani. Nato so določeni parametri posameznih modelov. Na koncu pa so modeli med seboj primerjani in izbran je najboljši model.
Keywords:
zavarovalništvo
,
posplošeni linearni model
,
strojno učenje
,
odločitveno drevo
,
naključni gozd
,
nevronska mreža
Place of publishing:
Maribor
Publisher:
[V. Čoh]
Year of publishing:
2020
PID:
20.500.12556/DKUM-75589
UDC:
519.233:004.85(043.2)
COBISS.SI-ID:
17705219
NUK URN:
URN:SI:UM:DK:JNAVDIPG
Publication date in DKUM:
09.06.2020
Views:
1857
Downloads:
197
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ČOH, Vito, 2020,
Uporaba strojnega učenja za napovedovanje škodnih dogodkov
[online]. Master’s thesis. Maribor : V. Čoh. [Accessed 31 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=75589
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Foundry wastes as a potential precursor in alkali activation technology
Final report on the RIS Intership implementation
Final report on the RIS Intership implementation
The deformation of alkali-activated materials at an early age under different curing conditions
PUR in geopolymer
Similar works from other repositories:
Deformation mechanisms underlying tension-compression asymmetry in magnesium alloy ZK60 revealed by acoustic emission monitoring
Vintovaya ekstruziya
Enhancing the mechanical properties of biodegradable Mg alloys processed by warm HPT and thermal treatments
Particle evolution in Mg-Zn-Zr alloy processed by integrated extrusion and equal channel angular pressing
The effects of severe plastic deformation and/or thermal treatment on the mechanical properties of biodegradable Mg-alloys
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
12.12.2019
Secondary language
Language:
English
Title:
Using machine learning to predict loss events
Abstract:
The master thesis presents the use of generalized linear model and different machine learning methods in insurance. It is divided into theoretical and practical part. At the beginning of the theoretical part, basic notions of probability and insurance are described. It is also presented, how insurance companies determine the insurance premium. Then the theoretical background of generalized linear model and the use of it in predicting claim amount are presented. At the end of the theoretical part, machine learning is described and also decision trees, random forests and neural networks are presented in detail. The practical part of master thesis is focused on how generalized linear model, random forest and neural network are used for predicting car insurance claims. First, the data is presented and processed. Then the parameters of each model are determined. In the end, the models are compared and the best one is chosen.
Keywords:
insurance
,
generalized linear model
,
machine learning
,
decision tree
,
random forest
,
neural network
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back