| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Napoved proizvodnje električne energije sončnih elektrarn podjetja dem
Authors:ID Žvajker, Branimir (Author)
ID Seme, Sebastijan (Mentor) More about this mentor... New window
ID Sredenšek, Klemen (Comentor)
Files:.pdf VS_Zvajker_Branimir_2019.pdf (10,74 MB)
MD5: 19DDE59F51A431D49C22DE48AFF60BC3
PID: 20.500.12556/dkum/22f9af58-1c48-4437-894e-bf513d719f91
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FE - Faculty of Energy Technology
Abstract:S pomočjo načrtovane proizvodnje električne energije iz sončnih elektrarn se lahko načrtuje dejansko potrebno proizvodnjo električne energije iz vseh ostalih virov, ki jih lahko reguliramo. Zanesljivo napovedovanje bo v prihodnosti vedno pomembnejše, saj nas bo zanimala informacija o napovedani proizvodnji sončne elektrarne za naslednji dan oz. naslednje dni. Z večanjem velikosti sončne elektrarne je pomembnost napovedovanja proizvodnje električne energije še toliko večja, saj se veča tudi vpliv na elektroenergetski sistem. Razvili smo metodo napovedovanja, ki temelji na napovedi sončnega sevanja za naslednji dan za posamezno sončno elektrarno. Napovedani meteorološki podatki se spreminjajo vsako uro, zato je negotovost napovedi relativno visoka. Kljub temu smo v predstavljenem pristopu dobili zadovoljivo natančno napoved proizvodnje električne energije, saj je absolutna vrednost pogreška manjša od 5% v vsaj šestini opazovanega obdobja in manjša od 10% v vsaj tretjini opazovanega obdobja.
Keywords:sončne elektrarne, sončni moduli, napovedovanje, proizvodnja električne energije, elektroenergetski sistem
Place of publishing:Krško
Publisher:[B. Žvajker]
Year of publishing:2019
PID:20.500.12556/DKUM-75448 New window
UDC:621.311.243:502.174.3(497.4)(043.2)
COBISS.SI-ID:1024370268 New window
NUK URN:URN:SI:UM:DK:H7L4ZT1Z
Publication date in DKUM:15.01.2020
Views:4343
Downloads:153
Metadata:XML DC-XML DC-RDF
Categories:FE
:
ŽVAJKER, Branimir, 2019, Napoved proizvodnje električne energije sončnih elektrarn podjetja dem [online]. Bachelor’s thesis. Krško : B. Žvajker. [Accessed 23 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=75448
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:15.11.2019

Secondary language

Language:English
Title:Forecasting of electricity from solar power plants of dem company
Abstract:With planning of the production of electricity from solar power plants, we can predict the real production of electricity from all other regulated sources. A reliable forecasting will therefore become of an increasing importance in the future where we aim to seek for the information about the production of a solar power plant for the next day or the next days. Further, with the increase of the size of a solar power plant, the importance of forecasting of the electricity production is even higher, as it may increasingly impact the complete power system. Due to the stated above, we have developed a forecasting methodology based on the next day's solar radiation forecast for an individual solar power plant. Since the forecasting-related meteorological data is prone to change every hour, the uncertainty of the approach is relatively high. Nevertheless, in the presented method, we obtained a high-level of accuracy in the prediction of electricity production, where the absolute error value demonstrated to be less than 5% in at least one-sixth of the observed period and less than 10% in at least one-third to half of the observed period.
Keywords:solar power plants, photovoltaic modules, forecasting, energy production, energy system


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica