Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Razvoj naprednega sistema za detektiranje voznih pasov na platformah GPU : master thesis
Authors:
ID
Crnek, Karlo
(Author)
ID
Rojc, Matej
(Mentor)
More about this mentor...
ID
Mlakar, Izidor
(Mentor)
More about this mentor...
Files:
MAG_Crnek_Karlo_2019.pdf
(3,48 MB)
MD5: 3BD144AC551685CAE9C9112C206E3470
PID:
20.500.12556/dkum/e84621ae-b288-4448-ad60-2723a111ce40
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Problem, ki ga obravnavamo v magistrski nalogi je detektiranje voznih pasov na RGB slikah oz. posnetkih ceste pred vozilom med vožnjo. Za rešitev tega problema smo se odločili uporabiti tehnike »globokega učenja«, predvsem konvolucijske nevronske mreže, s katerimi smo izvedli semantično segmentiranje. Problem smo reševali s tremi različnimi arhitekturami nevronskih mrež, ki smo jih učili na naboru podatkov BDD100k. Modele mrež smo nato testirali in primerjali rezultate s pomočjo IoU metrike za semantično segmentacijo. Opravili smo tudi več eksperimentov s ciljem izboljšanja IoU vrednosti in generalizacije modelov. Na koncu smo modele testirali tudi na Nvidia Jetson TX2 platformi in predlagali možnost vključitve takšnih modelov v sistem avtonomnega vozila.
Keywords:
globoko učenje
,
konvolucijske nevronske mreže
,
segmentacija voznega pasu
,
strojni vid
,
avtonomno vozilo
Place of publishing:
Maribor
Place of performance:
Maribor
Publisher:
[K. Crnek]
Year of publishing:
2019
Number of pages:
XVII, 84 f.
PID:
20.500.12556/DKUM-75089
UDC:
621.396.969.3:004.89(043.2)
COBISS.SI-ID:
22831638
NUK URN:
URN:SI:UM:DK:HACS1X2M
Publication date in DKUM:
13.11.2019
Views:
1890
Downloads:
183
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
CRNEK, Karlo, 2019,
Razvoj naprednega sistema za detektiranje voznih pasov na platformah GPU : master thesis
[online]. Master’s thesis. Maribor : K. Crnek. [Accessed 22 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=75089
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
20.09.2019
Secondary language
Language:
English
Title:
Development of an advanced system for lane detection on GPU platforms
Abstract:
The problem we are dealing with in this master’s thesis is lane detection on RGB images, i.e. images of the road in front of the vehicle during driving. To solve this problem, we have used “deep learning” techniques, specifically convolutional neural networks for the semantic segmentation task. We designed three different network architectures, which were trained on BDD100k dataset. Those network models were then evaluated and compared based on IoU metric used for semantic segmentation. We performed several experiments with the goal of improving IoU results and the generalization of the models. Finally, we tested the models on the Nvidia Jetson TX2 platform and proposed the possibilities for incorporating such models into the autonomous vehicle system.
Keywords:
deep learning
,
convolutional neural networks
,
lane segmentation
,
computer vision
,
autonomous vehicles
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back