| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Metoda podpornih vektorjev v detekciji goljufij
Authors:ID Krajnčič, Manja (Author)
ID Bokal, Drago (Mentor) More about this mentor... New window
ID Žnidaršič, Anja (Comentor)
Files:.pdf MAG_Krajncic_Manja_2019.pdf (1,31 MB)
MD5: AC704686392799C18A3E4915E4FD38B0
PID: 20.500.12556/dkum/a533ea58-5f19-41c8-9eac-5471e9661003
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Magistrsko delo obravnava problem odkrivanja goljufij za izbrani scenarij. Scenarij nam predstavlja eno obliko goljufanja, ki jo želimo razkriti z uporabo ustrezne metode. Kljub temu, da je za odkrivanje goljufij razvitih veliko metod, pa vse niso ustrezne. Metode, ki se v prvi vrsti delijo na nadzorovane in nenadzorovane, ne odkrijejo vseh vrst goljufij, zato je zelo pomembno, da ustvarimo več scenarijev in prilagodimo metode glede na naš nabor podatkov, s tem pa pokrijemo večjo množico možnih goljufov. Za scenarij si izberemo goljufanje gostincev, nad katerim razvijemo novo metodo za odkrivanje transakcijskih goljufij. Rezultate primerjamo tudi z rezultati, ki jih nad isto množico podatkov dobimo pri uporabi metode podpornih vektorjev enega razreda. Glavni rezultat magistrske naloge nam predstavlja kombinacijo uporabe dveh metod za rangiranje gostincev od najbolj do najmanj sumljivih.
Keywords:odkrivanje goljufij, subvencionirana študentske prehrana, metoda FSRO, metoda podpornih vektorjev enega razreda
Place of publishing:Maribor
Publisher:[M. Krajnčič]
Year of publishing:2019
PID:20.500.12556/DKUM-73771 New window
UDC:519.87(043.2)
COBISS.SI-ID:24717832 New window
NUK URN:URN:SI:UM:DK:XMIEPGAO
Publication date in DKUM:29.08.2019
Views:1609
Downloads:108
Metadata:XML DC-XML DC-RDF
Categories:FNM
:
KRAJNČIČ, Manja, 2019, Metoda podpornih vektorjev v detekciji goljufij [online]. Master’s thesis. Maribor : M. Krajnčič. [Accessed 25 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=73771
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:12.06.2019

Secondary language

Language:English
Title:Support vector machine and fraud detection
Abstract:The master thesis deals with fraud detection problem for a specific scenario. The scenario represents one type of fraud that we want to detect with a proper method. There are a lot of different methods for fraud detection, but not all of them are appropriate. Methods that are classified as supervised and unsupervised, do not detect all kinds of fraud, so it is very important to create multiple scenarios in our data set to cover diverse possibilities for fraud. For our scenario, we assume that only provider can commit fraud. We then develop a new method for a fraud detection in telecommunications and compare the results with results from method one-class support vector machine. The main result of master thesis represents a combination of using these two methods for ranking providers from most to least suspicious.
Keywords:fraud detection, subsidized student meals, FSRO method, one-class support vector machine


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica