| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Ohranjevalci relacij ekvivalentnosti
Authors:ID Radić, Gordana (Author)
ID Petek, Tatjana (Mentor) More about this mentor... New window
Files:.pdf DOK_Radic_Gordana_2019.pdf (535,43 KB)
MD5: A249ADF447CB911B833364E3EFD02C61
PID: 20.500.12556/dkum/8191a084-9f23-4923-bf49-8457ad9af15c
 
Language:Slovenian
Work type:Doctoral dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:V teoriji linearnih ohranjevalcev se srečujemo s problemi karakterizacije linearnih preslikav na vektorskem prostoru/algebri matrik ali operatorjev, ki ohranjajo določene lastnosti elementov. V doktorski disertaciji se bomo omejili na tiste preslikave, ki ohranjajo relacijo ekvivalentnosti, unitarne ekvivalentnosti ali kongruentnosti na B(X) oziroma B(H). V vseh obravnavanih primerih se izkaže, da lahko zastavljen problem zreduciramo na problem ohranjanja množice operatorjev ranga ena. Najprej podrobneje preučimo bijektivne linearne preslikave F iz B(X) vase, algebri omejenih linearnih operatorjev na refleksivnem kompleksnem Banachovem prostoru X, ki ohranjajo relacijo ekvivalentnosti. To pomeni, da sta F(A) in F(B) ekvivalentna, kakor hitro sta A in B iz B(X) ekvivalentna, tj. obstajata taka obrnljiva operatorja S in T iz B(X), da je A = SBT. Če pri tem S in T zapišemo kot končen produkt involucij na X, rečemo, da sta A in B involutivno ekvivalentna. V duhu te na novo definirane relacije preoblikujemo zastavljen problem in opišemo surjektivne linearne preslikave, ki involutivno ekvivalentna operatorja preslikajo v ekvivalentna. Še več, celo brez predpostavke linearnosti klasificiramo surjektivne preslikave, a tokrat z močnejšim privzetkom, da je operator A-B ekvivalenten operatorju C natanko tedaj, ko je operator F(A)-F(B) ekvivalenten operatorju F(C), za vse A,B,C iz B(X). V posebnem primeru, kadar sta S in T iz B(H), kjer je H kompleksen Hilbertov prostor, unitarna, pravimo, da sta A,B iz B(H) unitarno ekvivalentna. Poiskali bomo natančno strukturno obliko bijektivnih linearnih preslikav na B(H), ki unitarno ekvivalentna operatorja preslika v unitarno ekvivalentna. Pokazali bomo, da takšni linearni ohranjevalci pravzaprav ohranjajo množico unitarnih operatorjev, nato pa z uporabo znanega rezultata, ki te preslikave opiše, podali rešitev problema. Če se zgodi, da je A = SBS*, za nek obrnljiv operator S iz B(H), rečemo, da sta A,B iz B(H) kongruenta. Najprej bomo relacijo temeljito raziskali, nato pa predstavili bijektivne linearne preslikave na B(H), ki ohranjajo relacijo kongruentnosti.
Keywords:Banachov prostor, Hilbertov prostor, linearen operator, linearni ohranjevalci, ohranjevalci relacij, ekvivalentnost, involutivna ekvivalentnost, unitarna ekvivalentnost, kongruentnost
Place of publishing:[Maribor
Publisher:G. Radić]
Year of publishing:2019
PID:20.500.12556/DKUM-73309 New window
UDC:517.983.2(043.3)
COBISS.SI-ID:300346880 New window
NUK URN:URN:SI:UM:DK:YSJNSYKI
Publication date in DKUM:10.06.2019
Views:1628
Downloads:165
Metadata:XML DC-XML DC-RDF
Categories:FNM
:
RADIĆ, Gordana, 2019, Ohranjevalci relacij ekvivalentnosti [online]. Doctoral dissertation. Maribor : G. Radić. [Accessed 16 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=73309
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:25.03.2019

Secondary language

Language:English
Title:Preservers of relations of equivalence
Abstract:Linear preserver problems concern the characterization of linear maps on spaces/algebras of matrices or operators that leave certain properties, functions, subsets or relations invariant. In this dissertation we restrict our attention to the linear maps on B(X) or B(H) preserving each of the given relations: equivalence, equivalence by unitaries, congruence. A unified approach by reducing the problem to the case of rank-one preserving maps is used. By this method we find a complete description of bijective linear maps F on B(X), the algebra of all bounded linear operators on a reflexive complex Banach space, which preserves equivalence. This means that F(A) and F(B) are equivalent whenever A and B from B(X) are equivalent, i.e. there exist invertible S,T from B(X) such that A = SBT. If S and T are, in addition, finite products of involutions on X, A and B are said to be equivalent by products of involutions. By this newly defined relation we modified the stated problem and we determine those surjective linear maps where from equivalence by products of involutions of A and B from B(X) it follows that F(A) and F(B) are equivalent. Moreover, we characterize surjective maps even without linearity, but this time with stronger assumption of A-B being equivalent to C if and only if F(A)-F(B) is equivalent to F(C), for every A,B,C from B(X). In the special case when S,T from B(H), where H is complex Hilbert space, being unitary, operators A,B from B(H) are called to be equivalent by unitaries. In this thesis, we will also find the representation of bijective linear maps on B(H) which preserve equivalence by unitaries. To this aim we will apply a well-known result on the unitary group preserving maps. If A = SBS*, for some invertible operator S from B(H), we say that the operator A is congruent to the operator B. Following the properties of this relation, we will be able to consider the structure of bijective linear maps on B(H) preserving congruence.
Keywords:Banach space, Hilbert space, linear operator, linear preservers, relation preserving, equivalence relation, equivalence by product of involutions, equivalence by unitaries, congruence


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica