Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Identifikacija slabe kode s strojnim učenjem
Authors:
ID
Šoln, Roman
(Author)
ID
Kokol, Peter
(Mentor)
More about this mentor...
Files:
VS_Soln_Roman_2019.pdf
(1,56 MB)
MD5: 94A5310EAE3EDD28FA01494FE514E36F
PID:
20.500.12556/dkum/227de1f4-bee4-4274-a85b-f6197adf2c5b
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Diplomsko delo opisuje nastanek in razvoj aplikacije za identifikacijo slabe kode s strojnim učenjem. Predstavljen je začetek, kdaj se je vse skupaj začelo razvijati, ter že obstoječe rešitve. Predstavljeni so vonji, ki jih lahko koda oddaja ter tudi, kako te vonje odstranimo. Opisano je tudi, kdaj vonje ignoriramo ter zakaj to storimo. Na kratko so opisane uporabljene tehnologije ter orodja in njihove glavne značilnosti. Opisan je potek razvoja same aplikacije po delih, ki so ključnega pomena za pravilno delovanje same aplikacije. Predstavljen je tudi videz in delovanje same aplikacije.
Keywords:
Strojno učenje
,
priprava podatkov
,
identifikacija
,
slaba koda
Place of publishing:
[Maribor
Publisher:
R. Šoln
Year of publishing:
2019
PID:
20.500.12556/DKUM-73178
UDC:
004.85:004.056.5(043.2)
COBISS.SI-ID:
22212118
NUK URN:
URN:SI:UM:DK:N28NF9AY
Publication date in DKUM:
19.03.2019
Views:
2057
Downloads:
202
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŠOLN, Roman, 2019,
Identifikacija slabe kode s strojnim učenjem
[online]. Bachelor’s thesis. Maribor : R. Šoln. [Accessed 26 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=73178
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Hypodontia prevalence and pattern in women with epithelial ovarian cancer
Similar works from other repositories:
Odkrivanje raka jajčnikov in vloga splošnega zdravnika
Rak jajčnikov
Smernice za kirurško zdravljenje bolnic z rakom jajčnikov
Sistemsko zdravljenje tumorjev jajčnikov
Dvojni primarni rak jajčnikov in dojk
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
27.02.2019
Secondary language
Language:
English
Title:
Bad code identification with machine learning
Abstract:
The diploma work describes the creation and development of an application for the identification of a bad code with machine learning. Represent the beginning, when all began to develop and describe already existing solutions. Represents the smells and why code can stink bad and how to remuve it. It is also described when we should ignore the smells, and why we should do it. Describes the technologies and tools used and their main characteristics. The development of the application itself is divided into sections that are crucial for the proper functioning of the application itself. The appearance and performance of the application itself is presented.
Keywords:
Machine learning
,
data preparation
,
identification
,
bad code
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back