Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Sistem strojnega vida za prepoznavo površinskih napak
Authors:
ID
Petek, Marcel
(Author)
ID
Gleich, Dušan
(Mentor)
More about this mentor...
ID
Klančnik, Simon
(Mentor)
More about this mentor...
Files:
MAG_Petek_Marcel_2019.pdf
(5,01 MB)
MD5: F8082578FD4282FE3F13E1B91BA959EE
PID:
20.500.12556/dkum/1c2e7bf5-df24-432b-95b7-780c7c7bdb9e
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Magistrsko delo podaja pregled metod za propoznavo površinskih napak na obdelovancih. Objekti opazovanja so krmilne tipke, podsklop ohišij v elektroomaricah. Predstavljene bodo tri metode razvrščanja krmilnih tipk v dober in slab razred. Zajemanje slik je bilo opravljeno s pomočjo laboratorijske opreme, saj so elementi opreme višjega cenovnega razreda. Namen magistrske naloge je v bazah slik krmilnih tipk z različnimi metodami prepoznati napake in jih razvrstiti v pripadajoči razred. Zaradi specifičnosti problematike zaznavanja so se metode prilagajale problemu. Uporabili smo metode prepoznave napak na nadzorovan in nenadzorovan način, torej globinsko učenje z uporabo nevronske mreže, avtoenkoderja in klasično pragovno metodo z uporabo različnih detektorjev robov in preglednih tabel. Omenjene globoke metode se dandanes ne uporabljajo v veliki meri za industrijske namene. Metode so se namreč izboljšale do te mere, da veliki koncerni, kot so IBM, Google, Facebook, uporabniku napram preteklim iskalnim nizom v brskalniku predlagajo, kaj naj bi iskal po svetovnem spletu. Za izbiro globokega učenja namesto genetskega ali algoritma rojev delcev smo se odločili izključno zaradi hitre prilagoditve programa na vhodne parametre in razvoja programa od preteklosti, ko je nivo globine nevronskih mrež bila samo ena prikrita plast z enim nevronom, do danes, ko se lahko nivo adaptivno spreminja glede na vhodno problematiko. Dostopni algoritmi za zaznavanje defektov na teksturah, ki smo jih preizkusili v komercialnih paketih (Vision NI), niso bili učinkoviti za detekcijo teh nepravilnosti. To je motivacija za raziskovanje učinkovitosti drugih pristopov in za primerjavo učinkovitosti. S primerjavo metod bomo za nadaljnje raziskovanje izbrali tisto, ki bo dosegla cilj, 95-odstotno stopnjo natančnosti razvrstitve v razreda dober in slab. Začetni cilj razvrstitve smo uspeli dosečti z uporabo globokega učenja nevronskih mrež.
Keywords:
avtoenkoder
,
strojni vid
,
razvrščanje
,
globoko učenje
,
nevronska mreža
Place of publishing:
[Maribor
Publisher:
M. Petek
Year of publishing:
2019
PID:
20.500.12556/DKUM-72919
UDC:
004.93:620.191(043.2)
COBISS.SI-ID:
22168086
NUK URN:
URN:SI:UM:DK:SDTK1GHP
Publication date in DKUM:
19.02.2019
Views:
1982
Downloads:
171
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PETEK, Marcel, 2019,
Sistem strojnega vida za prepoznavo površinskih napak
[online]. Master’s thesis. Maribor : M. Petek. [Accessed 26 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=72919
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Vpliv pandemije COVID-19 na duševno zdravje zapornikov
Vpliv pandemije COVID-19 na duševno zdravje nosečnic
Vpliv pandemije COVID-19 na duševno zdravje študentov
Vpliv pandemije Covid-19 na proces poslovnega načrtovanja
Vpliv pandemije "covid-19" na učni proces študentov
Similar works from other repositories:
Vpliv pandemije COVID-19 na duševno zdravje medicinskih sester
Vpliv pandemije covid-19 na duševno zdravje nosečnic
Vpliv pandemije Covid-19 na družine s šoloobveznimi otroki
Vpliv pandemije COVID-19 na poslovanje majhnega storitvenega podjetja
Psihosocialne težave in izzivi zaposlenih v času pandemije covida
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:
13.12.2018
Secondary language
Language:
English
Title:
Machine vision system for surface inspection
Abstract:
The master's thesis provides an overview of methods for recognizing surface errors on work pieces. The observation objects are control keys, a sub-assembly of the enclosures in the electric chambers. Three methods for classifying control keys to a good and a bad class will be presented. Image capture was done with the help of laboratory equipment, since the elements of the equipment are of higher price range. The purpose of the master's thesis is to identify faults of control keys with different methods and to classify them in the corresponding class. Due to the specificity of the problem of identification, the methods were adjusted to the problem. We used methods of recognition of errors in a controlled and uncontrolled way, therefore, deep learning with usage of neural networks, auto encoder and classical sluice-gate method, using various detectors of edges and lookup tables. These deep methods are not widely used today for industrial purposes. The methods have improved to such an extent that the great concerns, such as IBM, Google, Facebook, suggest to the user what they should search for on the Internet based on the previous searches. We have chosen deep learning instead of genetic or swarm particles algorithm, exclusively due to the programme’s rapid adjustments to the input parameters and the development of program since the past. The level of depth of neural networks used to be only one disguised with a single layer neuron, and now the level can adaptively change depending on the input problems. Accessible algorithms for detecting defects on textures that we tested in commercial packages (Vision NI) were not effective for detecting these malfunctions. This is the motivation for exploring the effectiveness of other approaches and to compare their efficiency. With comparison of methods, we will choose the one who will achieve the goal of 95% degree of accuracy of the classification in class good or bad for further exploration. The initial aim of the ranking we managed to achieve with the use of deep learning of neural networks.
Keywords:
autoencoder
,
machine vision
,
classification
,
deep learning
,
neural network
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back