Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Predikcija športnih rezultatov z uporabo strojnega učenja
Authors:
ID
Korpar, Žan
(Author)
ID
Podgorelec, Vili
(Mentor)
More about this mentor...
Files:
VS_Korpar_Zan_2018.pdf
(725,55 KB)
MD5: B8C5087733C7D598C88D684E2EC07884
PID:
20.500.12556/dkum/5abf9db1-83b4-46e3-a49c-7bc2dc87f360
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V diplomskem delu so predstavljeni zgodovina strojnega učenja in pogosto uporabljani algoritmi, opisano je, kako so se algoritmi razvijali in kateri so bili predhodniki sedanjih. Za preizkus uspešnosti izbranih algoritmov v praktičnem delu naloge je bil razvit program, v katerem je preizkušenih nekaj najpogostejših algoritmov strojnega učenja. V ta namen so bili s programom samodejno pridobljeni podatki o tekmah, ekipah in lestvici angleške nogometne lige ter shranjeni v lokalno podatkovno bazo. Namen razvitega programa in uporabljenih algoritmov strojnega učenja je napovedovanje izidov tekem in števila doseženih golov domačega moštva. Točnost napovedi se giblje med 30 in 50 odstotki, za doseganje boljših rezultatov pa bi potrebovali kakovostnejše in obsežnejše podatke.
Keywords:
strojno učenje
,
klasifikacija
,
regresija
,
napovedovanje
Place of publishing:
[Maribor
Publisher:
Ž. Korpar
Year of publishing:
2018
PID:
20.500.12556/DKUM-72355
UDC:
004.832.021(043.2)
COBISS.SI-ID:
21919254
NUK URN:
URN:SI:UM:DK:XHZBEGKS
Publication date in DKUM:
22.11.2018
Views:
2478
Downloads:
164
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KORPAR, Žan, 2018,
Predikcija športnih rezultatov z uporabo strojnega učenja
[online]. Bachelor’s thesis. Maribor : Ž. Korpar. [Accessed 26 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=72355
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Hypodontia prevalence and pattern in women with epithelial ovarian cancer
Similar works from other repositories:
Odkrivanje raka jajčnikov in vloga splošnega zdravnika
Rak jajčnikov
Smernice za kirurško zdravljenje bolnic z rakom jajčnikov
Sistemsko zdravljenje tumorjev jajčnikov
Dvojni primarni rak jajčnikov in dojk
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
20.09.2018
Secondary language
Language:
English
Title:
Predicting sports results using machine learning
Abstract:
In the thesis we present the history of machine learning and commonly used algorithms. We describe how algorithms were developed and which algorithms were predecessors to the present ones. To test the performance of selected algorithms in the practical part of the thesis, we develop a program in which we try out some of the most common algorithms in machine learning. For this purpose, we automatically acquire information about the matches, teams and rankings of the English Football League, and store them in a local database. The purpose of the developed program and the used machine learning algorithms is to predict the results of the matches and the number of goals scored by the home team. The accuracy of the forecast ranges between 30 and 50 percent. For better and more comprehensive data is needed to achieve better results.
Keywords:
machine learning
,
classification
,
regression
,
predicting
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back