Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
Authors:
ID
Banko, Jan
(Author)
ID
Potočnik, Božidar
(Mentor)
More about this mentor...
ID
Šavc, Martin
(Comentor)
Files:
UN_Banko_Jan_2018.pdf
(2,69 MB)
MD5: 58EFC01B17C5C528F908854CD51712CE
PID:
20.500.12556/dkum/a71bcc49-752b-483e-9017-c6a71da6a097
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V diplomskem delu se ukvarjamo s prepoznavo jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež. Namen diplomskega dela je razvoj in implementacija sistema, ki je zmožen prepoznati hrano na digitalni sliki. Natančneje smo preučili delovanje konvolucijskih nevronskih mrež ter postopek prepoznavanja objektov. Opisali smo tudi uporabljene algoritme za detekcijo objektov, ki uporabljajo konvolucijske nevronske mreže. Pri implementaciji razpoznavalnika hrane smo se omejili na 8 različnih kategorij hrane. Pri testiranju na podatkovni zbirki »The Food-101 Data Set« je na množici 2400 slik najboljši izmed uporabljenih modelov detektorjev dosegel natančnost prepoznavanja 95,59 % pri uporabi metrike »PASCAL VOC 2010« ter 72,1 % pri uporabi metrike »COCO«.
Keywords:
računalniški vid
,
prepoznavanje hrane
,
konvolucijske nevronske mreže
,
Tensorflow
Place of publishing:
[Maribor
Publisher:
J. Banko
Year of publishing:
2018
PID:
20.500.12556/DKUM-71472
UDC:
004.93:004.032.26(043.2)
COBISS.SI-ID:
21768982
NUK URN:
URN:SI:UM:DK:O14YCFLQ
Publication date in DKUM:
31.08.2018
Views:
3039
Downloads:
314
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BANKO, Jan, 2018,
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
[online]. Bachelor’s thesis. Maribor : J. Banko. [Accessed 21 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=71472
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Razpoznavanje človeških emocij na digitalnih posnetkih s pomočjo konvolucijskih nevronskih mrež
Prepoznavanje jedi iz digitalnih slik s pomočjo konvolucijskih nevronskih mrež
Ocenjevanje starosti osebe na osnovi digitalnih posnetkov z uporabo konvolucijskih nevronskih mrež
Detekcija osebe v globinski sliki s pomočjo konvolucijskih nevronskih mrež
Prepoznavanje aktivnosti osebe iz zaporedja slik s pomočjo konvolucijskih nevronskih mrež
Similar works from other repositories:
Dolgoročno sledenje objektov z uporabo predlaganja regij
Hand Segmentation for Augmented Reality
Sledenje objektov s segmentacijo in napovedovanjem globinskih barvnih slik
Detekcija in klasifikacija objektov v vodnem okolju s pomočjo konvolucijskih nevronskih mrež
Navidezno pomerjanje frizur s postopki računalniškega vida
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
16.08.2018
Secondary language
Language:
English
Title:
Food recognition from digital images using convolutional neural networks
Abstract:
In the thesis we are dealing with food recognition from digital images using convolutional neural networks. The purpose of this thesis is to develop and implement a system, capable of detecting food items in a digital image. We thoroughly studied how convolutional neural networks work, and examined the object detection pipeline. We describe convolutional neural network based object detection algorithms that were used in the thesis. In the implementation of the food detection system we limited ourselves to 8 different food categories. During testing on »The Food-101 Data Set« using 2400 images, the best object detection model of those that were used achieved a classification rate of 95.59 % when using the »PASCAL VOC 2010« metric and 72.1 % when using the »COCO« metric.
Keywords:
computer vision
,
food recognition
,
convolutional neural networks
,
Tensorflow
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back