Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Klasifikacija dogodkov v časovnih vrstah s strojnim učenjem
Authors:
ID
Kavran, Domen
(Author)
ID
Lukač, Niko
(Mentor)
More about this mentor...
Files:
UN_Kavran_Domen_2018.pdf
(979,03 KB)
MD5: B35CBB4859C201A824717EC475933DB8
PID:
20.500.12556/dkum/30b6ffc8-0071-4f8c-a1b0-244528f7d180
Language:
Slovenian
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V diplomskem delu opišemo algoritem segmentacije časovnih vrst in postopek priprave vektorjev značilnic segmentov za učenje in testiranje klasifikacijskih modelov za zaznavo dogodkov. Segmentacijo časovnih vrst izvedemo z algoritmom drsečega okna, kjer za merilo razdalje med vrednostmi uporabimo algoritem dinamičnega časovnega sledenja. Pripravo vektorjev značilnic segmentov začnemo z definiranjem slovarja lokalnih podsegmentov. Slovar je pridobljen z gručenjem K-povprečij. Vsak segment predstavimo z normaliziranim histogramom pojavitev lokalnih podsegmentov na podlagi slovarja. Za učenje klasifikacijskih modelov uporabimo algoritme strojnega učenja, ki se razlikujejo v računski zahtevnosti in doseženi natančnosti, na katero vplivajo tudi izbrani parametri segmentacije in velikost slovarja.
Keywords:
klasifikacija
,
časovna vrsta
,
strojno učenje
,
segmentacija
Place of publishing:
[Maribor
Publisher:
D. Kavran
Year of publishing:
2018
PID:
20.500.12556/DKUM-71224
UDC:
004.5:004.852(043.2)
COBISS.SI-ID:
21746198
NUK URN:
URN:SI:UM:DK:IAHD3P8D
Publication date in DKUM:
28.08.2018
Views:
2158
Downloads:
219
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KAVRAN, Domen, 2018,
Klasifikacija dogodkov v časovnih vrstah s strojnim učenjem
[online]. Bachelor’s thesis. Maribor : D. Kavran. [Accessed 26 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=71224
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Posodabljanje ljubezenskih romanov
Translating titles of childrenʹs and young adultsʹ literature
Prevajalsko-ideološki premiki v slovenskih prevodih romana Heidi
Translation of English literature into Slovene and Slovene literature into English in the last 5 years: Trends, challenges and tendencies
ǂThe ǂinfluence of sociolinguistic factors in translating nominal address forms from English to Slovene (in the films Hue and cry and Indiscreet)
Similar works from other repositories:
Potencial strojnega učenja za identifikacijo napak v dinamiki rotorjev
Uporaba strojnega učenja pri razvoju kemijskih procesov
Prenos znanja med klasifikatorji v strojnem učenju
Identifikacija napak na ležajih s pomočjo paketa za strojno učenje scikit-learn
A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
26.07.2018
Secondary language
Language:
English
Title:
Classification of events in time series data using machine learning
Abstract:
In this thesis, an algorithm of time series segmentation and procedure of preparing segments feature vectors for training and testing classification models are presented, in order to detect time series events. Sliding window algorithm with dynamic time warping as distance measure is used for time series segmentation. Creating segments feature vectors starts with defining a dictionary of local subsegments. Dictionary is created with K-means clustering. Each segment is described with normalized histogram of local subsegment occurances based on dictionary. Machine learning algorithms, used for training classification models, differ in computation complexity and achieved accuracy. Achieved accuracy depends on the selected segmentation parameters and dictionary.
Keywords:
classification
,
time series
,
machine learning
,
segmentation
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back