Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Napovedovanje GPS sledi z globokimi nevronskimi mrežami
Authors:
ID
Borlinić, Jernej
(Author)
ID
Taranenko, Andrej
(Mentor)
More about this mentor...
ID
Orbanić, Alen
(Comentor)
Files:
MAG_Borlinic_Jernej_2018.pdf
(9,58 MB)
MD5: B1D100895E1877A799A656515BD4739A
PID:
20.500.12556/dkum/253999be-43f2-423a-92f9-e53687c566aa
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Metode strojnega učenja vse bolj prodirajo v vsa področja modernega gospodarskega in raziskovalnega okolja. Obstoječi algoritmi dosegajo vrhunske rezultate pri nalogah kot so prepoznavanje slik, razumevanje besedil in govora ipd. Avtomatizirane rešitve takšnih nalog so še nedavno veljale za nedosegljive. V tej magistrski nalogi pregledamo najpopularnejše globoke nevronske mreže, iz njih sestavljene modele in njihove načine učenja. S pridobljenim znanjem in večkratnim testiranjem v drugem delu, razvijemo model globoke nevronske mreže za napovedovanje GPS sledi. Osnovno testiranje modela poteka na lastnem naboru sintetično ustvarjenih podatkov. Dva najuspešnejša modela v nadaljevanju učimo s pomočjo izbranih realnih podatkov pridobljenih od podjetja GoOpti d. o. o. Končni izpopolnjen model pa učimo z razširjenim naborom realnih podatkov. V magistrski nalogi so opisani izbira in implementacija modela, način učenja, ustvarjanje in pridobivanje naborov podatkov in pridobljeni rezultati.
Keywords:
Strojno učenje
,
globoko učenje
,
globoke nevronske mreže
,
povratne nevronske mreže.
Place of publishing:
Maribor
Publisher:
[J. Borlinić]
Year of publishing:
2018
PID:
20.500.12556/DKUM-71179
UDC:
004.85(043.2)
COBISS.SI-ID:
24225288
NUK URN:
URN:SI:UM:DK:YKANTDCK
Publication date in DKUM:
13.12.2018
Views:
2677
Downloads:
160
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BORLINIĆ, Jernej, 2018,
Napovedovanje GPS sledi z globokimi nevronskimi mrežami
[online]. Master’s thesis. Maribor : J. Borlinić. [Accessed 28 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=71179
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Optimiranje produktivnosti mehkega žarjenja
Similar works from other repositories:
Avtomatizacija elektro-obločne peči
Ocenjevanje temperature taline v elektroobločni peči z uporabo mehkega modeliranja
Vpliv delovanja elektro-obločne peči na elektroenergetski sistem Steel Štore
Vpliv delovanja vakuumskega odklopnika na transformator obločne peči v Štore Steel
Postopek za določitev parametrov trifaznega transformatorja s pomočjo optimizacije
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
23.07.2018
Secondary language
Language:
English
Title:
Predicting GPS tracks with deep neural networks
Abstract:
Machine learning methods are increasingly influencing all areas of the modern economic and research environment. Existing algorithms achieve top results in tasks such as image recognition, understanding text and speech, etc. Automated solutions to such tasks were until recently considered unavailable. In this master's thesis, we review the most popular deep neural networks, underlying models and their learning tipes. With the acquired knowledge and repeated testing in the second part, we develop a deep neural network model for predicting GPS tracks. Basic testing of the model takes place on our own synthetically generated dataset. The two most successful models are further taught using selected real data obtained from GoOpti d. o. o. and the final, best performing, model is taught with an expanded set of real data. The master's thesis describes the choice and implementation of the model, the tipe of learning, the creation and retrieval of data sets, and the obtained results.
Keywords:
Machine learning
,
deep learning
,
deep neural networks
,
recurrent neural networks.
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back