Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Uporaba nevronske mreže za krmiljenje simuliranega avtonomnega vozila
Authors:
ID
Borko, Aljaž
(Author)
ID
Strnad, Damjan
(Mentor)
More about this mentor...
Files:
MAG_Borko_Aljaz_2017.pdf
(5,28 MB)
MD5: DD83C239FAAFCE7DB72226A671E675AD
PID:
20.500.12556/dkum/778f58cc-9b52-4b3d-a4e2-db1fe3570b70
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V magistrskem delu smo preučili nevronske mreže in njihovo uporabo za učenje vožnje simuliranih avtonomnih vozil. Pripravili smo 3D-okolje s cesto, po kateri so se vozila učila voziti. Vsako vozilo ima svojo nevronsko mrežo, ki določa hitrost in smer vozila. Preučili in primerjali smo različne pristope učenja – evolucijski pristop in nadzorovano učenje z metodo vzvratnega prenosa napake. Cilj magistrskega dela je bil ustvariti simulirano avtonomno vozilo, ki je sposobno pravilne vožnje po desni strani ceste in se zna izmikati oviram med vožnjo.
Keywords:
nevronska mreža
,
evolucijski algoritmi
,
3D-simulacija
,
avtonomna vozila
Place of publishing:
[Maribor
Publisher:
A. Borko
Year of publishing:
2017
PID:
20.500.12556/DKUM-68576
UDC:
004.032.26:004.383.4(043.2)
COBISS.SI-ID:
20971286
NUK URN:
URN:SI:UM:DK:N2OIFIUN
Publication date in DKUM:
26.10.2017
Views:
1482
Downloads:
157
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BORKO, Aljaž, 2017,
Uporaba nevronske mreže za krmiljenje simuliranega avtonomnega vozila
[online]. Master’s thesis. Maribor : A. Borko. [Accessed 26 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=68576
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:
The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:
27.09.2017
Secondary language
Language:
English
Title:
Using a neural network to control a simulated autonomous vehicle
Abstract:
In the present research, we studied neural networks and their level of application in learning how to drive simulated autonomous vehicles. We created a 3D environment including a road on which the vehicles can train how to drive. Each vehicle has its own neural network that determines the direction and speed of the vehicle. We compared and studied different approaches to learning – evolutionary approach and supervised learning using the backpropagation method. The aim of this master thesis was to create a vehicle that is able to drive on the right side of the road and avoid the obstacles.
Keywords:
neural network
,
evolutionary algorithms
,
3D simulation
,
autonomous vehicle
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back