Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Napovedovanje značilnosti posameznikov z uporabo dinamike tipkanja
Authors:
ID
Petek, David
(Author)
ID
Musil, Bojan
(Mentor)
More about this mentor...
ID
Čuš Babić, Nenad
(Comentor)
Files:
MAG_Petek_David_2017.pdf
(465,40 KB)
MD5: FCB6BB9831DEFC18DBEDB98E3E663E47
PID:
20.500.12556/dkum/d7446077-6fc9-430e-939e-6d209773d156
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FF - Faculty of Arts
Abstract:
Cilj raziskave je bil na podlagi dinamike tipkanja napovedati velikih pet osebnostnih lastnosti in nekatere druge osebne značilnosti. Dinamika tipkanja je proučevanje natančnih časovnih podatkov o pritiskih in izpustih tipk ob tipkanju na računalniški tipkovnici. V raziskavi je sodelovalo 60 udeležencev, ki so pretipkali vnaprej pripravljeno besedilo ter izpolnili samoporočani osebnostni vprašalnik. Podatki o tipkanju so bili združeni v spremenljivke, ki so bile uporabljene kot vhodni podatki za nadzorovano strojno učenje. Dinamika tipkanja je bila uporabljena za klasificiranje udeležencev v zgornjo ali spodnjo skupino glede na povprečje vzorca za posamezno merjeno lastnost. Z uporabo metode umetnih nevronskih mrež smo uspešno napovedali vestnost za 62 % (p = 0,046) in višino za 63 % (p = 0,026) udeležencev.
Keywords:
dinamika tipkanja
,
biometrika
,
osebnostne lastnosti
,
spol
,
ročnost
Place of publishing:
Maribor
Publisher:
[D. Petek]
Year of publishing:
2017
PID:
20.500.12556/DKUM-68061
UDC:
159.923:57.087.1(043.2)
COBISS.SI-ID:
23416328
NUK URN:
URN:SI:UM:DK:YUXQZSWG
Publication date in DKUM:
01.02.2021
Views:
809
Downloads:
29
Metadata:
Categories:
FF
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PETEK, David, 2017,
Napovedovanje značilnosti posameznikov z uporabo dinamike tipkanja
[online]. Master’s thesis. Maribor : D. Petek. [Accessed 21 January 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=68061
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Licences
License:
CC BY 4.0, Creative Commons Attribution 4.0 International
Link:
http://creativecommons.org/licenses/by/4.0/
Description:
This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.
Licensing start date:
07.09.2017
Secondary language
Language:
English
Title:
Predicting characteristics of individuals using keystroke dynamics
Abstract:
Goal of present research was to predict big five personality traits and some other personal characteristics based on keystroke dynamics. Keystroke dynamics is the study of detailed timing information about key presses and releases while typing at a computer keyboard. Sixty participants typed predetermined text and solved a self-report personality questionnaire. Keystroke data was merged into variables which were used as input for supervised machine learning. Keystroke dynamics was used to classify participants into upper or lower group based on sample average for individual characteristic. Artificial neural network method was used to correctly predict conscientiousness for 62 % of participants (p = 0,046) and height for 63 % of participants (p = 0,026).
Keywords:
keystroke dynamics
,
bimetrics
,
personality traits
,
gender
,
handedness
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back