| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Organizational learning supported by machine learning models coupled with general explanation methods : a case of B2B sales forecasting
Authors:ID Bohanec, Marko (Author)
ID Robnik Šikonja, Marko (Author)
ID Kljajić Borštnar, Mirjana (Author)
Files:.pdf Organizacija_2017_Bohanec,_Robnik-Sikonja,_Kljajic_Borstnar_Organizational_Learning_Supported_by_Machine_Learning_Models_Coupled_with_Ge.pdf (1,31 MB)
MD5: 93A49BF9F09178A09E55F09A23D0D4C4
PID: 20.500.12556/dkum/0b0c51a1-ba18-47bd-a28e-2d0cef332c84
 
URL http://www.degruyter.com/view/j/orga.2017.50.issue-3/orga-2017-0020/orga-2017-0020.xml
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FOV - Faculty of Organizational Sciences in Kranj
Abstract:Background and Purpose: The process of business to business (B2B) sales forecasting is a complex decision-making process. There are many approaches to support this process, but mainly it is still based on the subjective judgment of a decision-maker. The problem of B2B sales forecasting can be modeled as a classification problem. However, top performing machine learning (ML) models are black boxes and do not support transparent reasoning. The purpose of this research is to develop an organizational model using ML model coupled with general explanation methods. The goal is to support the decision-maker in the process of B2B sales forecasting. Design/Methodology/Approach: Participatory approach of action design research was used to promote acceptance of the model among users. ML model was built following CRISP-DM methodology and utilizes R software environment. Results: ML model was developed in several design cycles involving users. It was evaluated in the company for several months. Results suggest that based on the explanations of the ML model predictions the users’ forecasts improved. Furthermore, when the users embrace the proposed ML model and its explanations, they change their initial beliefs, make more accurate B2B sales predictions and detect other features of the process, not included in the ML model. Conclusions: The proposed model promotes understanding, foster debate and validation of existing beliefs, and thus contributes to single and double-loop learning. Active participation of the users in the process of development, validation, and implementation has shown to be beneficial in creating trust and promotes acceptance in practice.
Keywords:decision support, organizational learning, machine learning, explanations
Publication status:Published
Publication version:Version of Record
Year of publishing:2017
Number of pages:str. 217-234
Numbering:Letn. 50, št. 3
PID:20.500.12556/DKUM-67887 New window
ISSN:1318-5454
UDC:659.2:004
ISSN on article:1318-5454
COBISS.SI-ID:7950611 New window
DOI:10.1515/orga-2017-0020 New window
NUK URN:URN:SI:UM:DK:2YNS4YFX
Publication date in DKUM:01.09.2017
Views:1751
Downloads:358
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
BOHANEC, Marko, ROBNIK ŠIKONJA, Marko and KLJAJIĆ BORŠTNAR, Mirjana, 2017, Organizational learning supported by machine learning models coupled with general explanation methods : a case of B2B sales forecasting. Organizacija : revija za management, informatiko in kadre [online]. 2017. Vol. 50, no. 3, p. 217–234. [Accessed 31 March 2025]. DOI 10.1515/orga-2017-0020. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=67887
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Organizacija : revija za management, informatiko in kadre
Shortened title:Organizacija
Publisher:Moderna organizacija
ISSN:1318-5454
COBISS.SI-ID:610909 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P5-0018
Name:Sistemi za podporo odločanju v elektronskem poslovanju

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:01.09.2017

Secondary language

Language:Slovenian
Title:Organizacijsko učenje, podprto z modeli strojnega učenja in splošnimi metodami razlage : primer napovedovanja prodaje na medorganizacijskem trgu
Abstract:Ozadje in namen: Napovedovanje prodaje na medorganizacijskem trgu je kompleksen odločitveni proces. Čeprav obstaja več pristopov in orodij za podporo temu procesu, se odločevalci v praksi še vedno zanašajo na subjektivno presojo. Problem je možno modelirati kot klasifikacijski problem, vendar pa so zmogljivi modeli strojnega učenja črne škatle, ki ne podpirajo transparentne razlage. Namen raziskave je predstaviti organizacijsko-informacijski model, ki temelji na modelu strojnega učenja, razširjenega s splošnimi metodami razlage, s ciljem podpore odločevalcem v procesu napovedovanja prodaje na medorganizacijskem trgu. Načrt/metodologija/pristop: Uporabili smo pristop akcijskega načrtovanja, ki z vključevanjem uporabnikov v proces raziskovanja, spodbuja sprejetost modela med uporabniki. Pri razvoju modela strojnega učenja smo sledili metodologiji CRISP-DM ter uporabili programsko okolje R. Rezultati: Model strojnega učenja smo skupaj z uporabniki razvijali v več ciklih. Model smo ovrednotili z večmesečno uporabo v sodelujočem podjetju. Rezultati kažejo, da so uporabniki izboljšali napovedi prodaje, ko so uporabljali model strojnega učenja, opremljenega z razlago napovedi. Ko so začeli zaupati v model, so na podlagi napovedi in razlag spremenili svoja prepričanja, izdelali natančnejše napovedi in prepoznali lastnosti procesa, ki ga model strojnega učenja ne vključuje. Zaključki: Predlagani pristop podpira razumevanje, spodbuja diskusijo in validacijo obstoječih prepričanj ter na ta način prispeva k učenju z enojno in dvojno zanko. Aktivno sodelovanje uporabnikov v procesu razvoja, validacije in implementacije je prispevalo k zaupanju in s tem k sprejetosti modela v praksi.
Keywords:podpora odločanju, organizacijsko učenje, strojno učenje, razlaga napovedi


Collection

This document is a part of these collections:
  1. Organizacija

Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica