Processing math: 100%
| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:On acyclic colorings of direct products
Authors:ID Špacapan, Simon (Author)
ID Tepeh, Aleksandra (Author)
Files:.pdf Discussiones_Mathematicae_Graph_Theory_2008_Spacapan,_Tepeh_On_acyclic_colorings_of_direct_products.pdf (142,13 KB)
MD5: D9B4EBB189ABF137C6F5A73BF3A66322
 
URL http://www.discuss.wmie.uz.zgora.pl/gt/index.php?doi=10.7151/dmgt.1363
 
Language:English
Work type:Scientific work
Typology:1.01 - Original Scientific Article
Organization:FS - Faculty of Mechanical Engineering
Abstract:A coloring of a graph G is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees T1 and T2 equals min{Δ(T1)+1,Δ(T2)+1}. We also prove that the acyclic chromatic number of direct product of two complete graphs Km and Kn is mnm2, where mn4. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised.
Keywords:mathematics, graph theory, coloring, acyclic coloring, distance-two coloring, direct product
Publication status:Published
Publication version:Version of Record
Year of publishing:2008
Number of pages:str. 323-333
Numbering:Letn. 28, št. 2
PID:20.500.12556/DKUM-65349 New window
ISSN:1234-3099
UDC:519.17
ISSN on article:1234-3099
COBISS.SI-ID:14893401 New window
NUK URN:URN:SI:UM:DK:8LGTYPFJ
Publication date in DKUM:31.03.2017
Views:909
Downloads:132
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
ŠPACAPAN, Simon and TEPEH, Aleksandra, 2008, On acyclic colorings of direct products. Discussiones mathematicae : Graph theory [online]. 2008. Vol. 28, no. 2, p. 323–333. [Accessed 1 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=65349
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share



Similar works from other repositories:

No similar works found

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discussiones mathematicae : Graph theory
Shortened title:Discuss. Math., Graph Theory
Publisher:Technical University Press
ISSN:1234-3099
COBISS.SI-ID:7487065 New window

Document is financed by a project

Funder:ARRS - Slovenian Research Agency
Project number:P1-0297
Name:Teorija grafov

Licences

License:CC BY-NC-ND 4.0, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Link:http://creativecommons.org/licenses/by-nc-nd/4.0/
Description:The most restrictive Creative Commons license. This only allows people to download and share the work for no commercial gain and for no other purposes.
Licensing start date:31.03.2017

Secondary language

Language:Slovenian
Title:Aciklična barvanja direktnih produktov
Abstract:Barvanje grafa je aciklično, če je poljubna unija dveh barvnih razredov gozd. Dokazano je, da je aciklično kromatično število produkta dveh dreves T1 in T2 enako min{Δ(T1)+1,Δ(T2)+1}. Prav tako je dokazano, da je aciklično kromatično število dveh polnih grafov Km in Kn enako mnm2, kjer je mn4. Številne meje za aciklično kromatično število so podane in v zvezi s tem so zastavljena nekatera vprašanja.
Keywords:matematika, teorija grafov, barvanje, aciklično barvanje, barvanje s pogojem na razdalji dva, direktni produkt grafov


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica