| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document

Title:Analiza zaznavanja aktivnosti prstov z zapestnico Myo
Authors:Galof, Nejc (Author)
Holobar, Aleš (Mentor) More about this mentor... New window
Files:.pdf UN_Galof_Nejc_2016.pdf (2,15 MB)
 
Language:Slovenian
Work type:Bachelor thesis/paper (mb11)
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V diplomskem delu analiziramo zaznavanje aktivnosti prstov z zapestnico Myo, s katero na področju podlahti z osmimi senzorji merimo površinske elektromiograme (EMG). Z meritvami dokažemo, da najlažje razpoznavamo posamične dvige iztegnjenih prstov, kjer dosežemo tudi do 95-odstotno natančnost. Pri gibih dveh prstov hkrati se natančnost zmanjša na 50 %. Aktivnosti palca na področju podlahti ne zaznavamo. Na kakovost razpoznave gibov prstov vplivajo omejenost gibljivosti prstov, prevodnost med kožo in senzorji EMG ter sama namestitev zapestnice Myo. Uporabnost zapestnice Myo za razpoznavo gibov prstov prikažemo z aplikacijo, ki omogoča igranje virtualnega klavirja.
Keywords:zapestnica Myo, razpoznava gibov prstov, površinski elektromiogrami, virtualni klavir
Year of publishing:2016
Publisher:N. Galof
Source:[Maribor
UDC:004.81:[602.1:681.5(043.2)
COBISS_ID:19884054 Link is opened in a new window
NUK URN:URN:SI:UM:DK:CHUWHOA7
Views:645
Downloads:157
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:KTFMB - FERI
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Analysis of finger activity detection with Myo armband
Abstract:We analyse the feasibility of finger activity detection by the Myo armband. The latter is placed on the forearm of the healthy male subject and measures eight surface electromyogram (EMG) channels from different finger extensors and flexors, except the thumb. We systematically analyse different finger movements. Our algorithm detects the extensions of fingers with accuracy of 95 %, whereas detection of other finger movements proves to be less accurate. Movements of two fingers decrease the accuracy of movement detection to 50 %. Quality of finger detection depends on the flexibility of subject’s fingers, electrical resistance between the skin and the EMG sensors and placement of the Myo armband. We demonstrate the usage of finger activity detection with a virtual piano application.
Keywords:Myo armband, finger movement detection, surface electromyograms, virtual piano


Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica