| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:NAPOVEDOVANJE ODPOVEDI IZDELKOV Z METODAMI STROJNEGA UČENJA
Authors:ID Mujanović, Amira (Author)
ID Kofjač, Davorin (Mentor) More about this mentor... New window
ID Škraba, Andrej (Comentor)
Files:.pdf MAG_Mujanovic_Amira_2016.pdf (1,27 MB)
MD5: 16A70F5578A199044239B324AADF8334
 
Language:Slovenian
Work type:Master's thesis/paper
Organization:FOV - Faculty of Organizational Sciences in Kranj
Abstract:Magistrska naloga obravnava razvoj modela za napovedovanje odpovedi izdelkov v garancijski dobi. Z odpovedovanjem izdelkov in problematiko zagotavljanja popravil v garancijski dobi se soočajo vsa proizvodna podjetja. Zagotavljanje popravil v garancijskem roku podjetjem predstavlja strošek, ki ga poskušajo minimizirati s pomočjo predvidevanja deležev odpovedi. Najpogosteje se napovedi izvedejo z empiričnimi modeli, ki so zgrajeni na preteklih podatkih o podobnih izdelkih in prilagojeni glede na izkušnje. V sklopu magistrske naloge smo s pomočjo različnih metod strojnega učenja in realnih podatkov razvili napovedni model in ocenili uspešnost napovedovanja. Najboljše rezultate napovedovanja smo dobili pri ansamblih regresijskih dreves, pri katerih smo podatke prilagodili eksponentnem modelu. Za zaključek smo pripravili priporočila kateri model uporabiti ob omejenem poznavanju podatkov o odpovedih.
Keywords:Napovedni model, odpoved izdelka, garancijski rok, kakovost, strojno učenje, nevronske mreže, regresijska drevesa.
Place of publishing:Maribor
Year of publishing:2016
PID:20.500.12556/DKUM-57638 New window
COBISS.SI-ID:7554067 New window
NUK URN:URN:SI:UM:DK:T4YSYIU8
Publication date in DKUM:01.04.2016
Views:1729
Downloads:183
Metadata:XML DC-XML DC-RDF
Categories:FOV
:
MUJANOVIĆ, Amira, 2016, NAPOVEDOVANJE ODPOVEDI IZDELKOV Z METODAMI STROJNEGA UČENJA [online]. Master’s thesis. Maribor. [Accessed 24 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=57638
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:PRODUCT FAILURE PREDICTION WITH MACHINE LEARNING METHODS
Abstract:Master's thesis deals with the development of a model for predicting the failure of products during the warranty period. All of the manufacturing companies are facing the product failure problem and problem with offering the possibility of repairing those products. Providing guarantees represents costs, which companies are trying to minimize by predicting the failure rates. Most often, this is done with empirical models, which are built on historical data for similar products and customized based on experiences. As part of the master's thesis, we developed different models using various methods of machine learning and real data. After development, we assessed the quality of prediction for each model. Ensembles of regression trees obtained the best results; in that case, the data was fitted to the exponential model. To wind up, we prepared recommendations which model to use in different scenarios.
Keywords:Prediction model, product failure, warranty period, quality, machine learning, neural networks, regression trees.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica