Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
NAPOVEDOVANJE ODPOVEDI IZDELKOV Z METODAMI STROJNEGA UČENJA
Authors:
ID
Mujanović, Amira
(Author)
ID
Kofjač, Davorin
(Mentor)
More about this mentor...
ID
Škraba, Andrej
(Comentor)
Files:
MAG_Mujanovic_Amira_2016.pdf
(1,27 MB)
MD5: 16A70F5578A199044239B324AADF8334
Language:
Slovenian
Work type:
Master's thesis/paper
Organization:
FOV - Faculty of Organizational Sciences in Kranj
Abstract:
Magistrska naloga obravnava razvoj modela za napovedovanje odpovedi izdelkov v garancijski dobi. Z odpovedovanjem izdelkov in problematiko zagotavljanja popravil v garancijski dobi se soočajo vsa proizvodna podjetja. Zagotavljanje popravil v garancijskem roku podjetjem predstavlja strošek, ki ga poskušajo minimizirati s pomočjo predvidevanja deležev odpovedi. Najpogosteje se napovedi izvedejo z empiričnimi modeli, ki so zgrajeni na preteklih podatkih o podobnih izdelkih in prilagojeni glede na izkušnje. V sklopu magistrske naloge smo s pomočjo različnih metod strojnega učenja in realnih podatkov razvili napovedni model in ocenili uspešnost napovedovanja. Najboljše rezultate napovedovanja smo dobili pri ansamblih regresijskih dreves, pri katerih smo podatke prilagodili eksponentnem modelu. Za zaključek smo pripravili priporočila kateri model uporabiti ob omejenem poznavanju podatkov o odpovedih.
Keywords:
Napovedni model
,
odpoved izdelka
,
garancijski rok
,
kakovost
,
strojno učenje
,
nevronske mreže
,
regresijska drevesa.
Place of publishing:
Maribor
Year of publishing:
2016
PID:
20.500.12556/DKUM-57638
COBISS.SI-ID:
7554067
NUK URN:
URN:SI:UM:DK:T4YSYIU8
Publication date in DKUM:
01.04.2016
Views:
1729
Downloads:
183
Metadata:
Categories:
FOV
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MUJANOVIĆ, Amira, 2016,
NAPOVEDOVANJE ODPOVEDI IZDELKOV Z METODAMI STROJNEGA UČENJA
[online]. Master’s thesis. Maribor. [Accessed 24 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=57638
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Ekonomski in ekološki vpliv naprave za razžveplanje dimnih plinov na bloku 4 TE Šoštanj
Dimensioning the pressure part of the recirculation pipeline
Kombinirana proizvodnja električne energije in toplote
Nadzor kakovosti procesa zgorevanja v TE-TO Ljubljana
Nadzor kakovosti procesa izdelave oblazinjenega pohištva
Similar works from other repositories:
Flue gas desulphurisation of large combustion plants in coastal locations
Hidroproizvodnja električne energije med naravnim, tehnološkim in poslovnim okoljem
Menedžment človeških virov v podjetju s proizvodnjo električne energije
Obvladovanje stroškov vzdrževanja v podjetju Hidroelektrarne na spodnji Savi
Analiza proizvodnje električne energije v Gorenjskih elektrarnah v letu 2017
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
PRODUCT FAILURE PREDICTION WITH MACHINE LEARNING METHODS
Abstract:
Master's thesis deals with the development of a model for predicting the failure of products during the warranty period. All of the manufacturing companies are facing the product failure problem and problem with offering the possibility of repairing those products. Providing guarantees represents costs, which companies are trying to minimize by predicting the failure rates. Most often, this is done with empirical models, which are built on historical data for similar products and customized based on experiences. As part of the master's thesis, we developed different models using various methods of machine learning and real data. After development, we assessed the quality of prediction for each model. Ensembles of regression trees obtained the best results; in that case, the data was fitted to the exponential model. To wind up, we prepared recommendations which model to use in different scenarios.
Keywords:
Prediction model
,
product failure
,
warranty period
,
quality
,
machine learning
,
neural networks
,
regression trees.
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back