| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:ODKLEPANJE PAMETNEGA TELEFONA Z OPERACIJSKIM SISTEMOM ANDROID S POMOČJO AVTOMATSKE PREPOZNAVE OBRAZA UPORABNIKA IZ DIGITALNE SLIKE
Authors:ID Hazl, Mateja (Author)
ID Potočnik, Božidar (Mentor) More about this mentor... New window
Files:.pdf UN_Hazl_Mateja_2015.pdf (2,37 MB)
MD5: 3AC3BB64FB7299D59B916115E73380AE
 
Language:Slovenian
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:V tem diplomskem delu smo implementirali aplikacijo za odklepanje telefona z Android operacijskim sistemom s pomočjo prepoznave obraza. Na začetku smo pregledali že obstoječe metode iz področja prepoznave obrazov, nato pa smo podrobneje opisali naš postopek za prepoznavo obraza. V našem postopku smo najprej detektirali pomembna območja na obrazu, ki smo jih nato obdelali s pomočjo Gaborjevih filtrov in uniformnih lokalnih binarnih vzorcev. Dobljene vrednosti smo shranili v vektor značilk. Pri fazi prepoznave smo uporabili Pearsonovo mero različnosti za izračun razdalje, vzorce pa smo razvrščali po metodi najbližjega soseda. Prag za razvrščevalnik smo izračunali s pomočjo povprečja razlik med slikami v učni množici. Algoritem je bil testiran na desetih osebah, ki smo jih slikali skupno 85-krat. Naš algoritem daje dobre rezultate ob dobro osvetljenih slikah (dnevna svetloba – natančnost okoli 90 %), natančnost pa se zmanjša pri testiranju ob slabših osvetlitvenih pogojih (sobna luč – 77,70 % natančnost). Aplikacija se dobro obnese pri zavračanju obrazov, ki jih ne smemo prepoznati (specifičnost – 90,70 %). Rezultati so nekoliko manj uspešni pri prepoznavi obrazov, ki jih moramo prepoznati (občutljivost – 85,71 %).
Keywords:prepoznava obraza, Android OS, Gaborjevi filtri, uniformni lokalni binarni vzorec
Place of publishing:[Maribor
Publisher:M. Hazl
Year of publishing:2015
PID:20.500.12556/DKUM-53999 New window
UDC:621.395.721.5(043.2)
COBISS.SI-ID:19318550 New window
NUK URN:URN:SI:UM:DK:DDQFHWQ6
Publication date in DKUM:14.10.2015
Views:1481
Downloads:283
Metadata:XML DC-XML DC-RDF
Categories:KTFMB - FERI
:
HAZL, Mateja, 2015, ODKLEPANJE PAMETNEGA TELEFONA Z OPERACIJSKIM SISTEMOM ANDROID S POMOČJO AVTOMATSKE PREPOZNAVE OBRAZA UPORABNIKA IZ DIGITALNE SLIKE [online]. Bachelor’s thesis. Maribor : M. Hazl. [Accessed 11 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=53999
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:UNLOCKING A SMARTPHONE WITH ANDROID OPERATING SYSTEM BY USING FACE RECOGNITION OF AN USER FROM A DIGITAL PICTURE
Abstract:In this thesis we implemented an application which unlocks a phone with the Android operating system by face recognition. Firstly, we reviewed existing methods from the research area of face recognition and then we described our procedure for face recognition in more detail. In our algorithm we started with detecting important areas of the face which we then processed with the help of Gabor filters and uniform local binary patterns. The results we obtained were then saved to feature vector. In the recognition stage we used Pearson's dissimilarity measure to calculate the distance. For sample classification we used the nearest neighbour method. We calculated the classification threshold from the mean value of the distances between pictures in our training set. The algorithm was tested on ten different people of which we took 85 pictures. Our algorithm produces good results with pictures that are well illuminated (daylight – accuracy approximately 90 %) but the performance is reduced if the pictures are taken in poor lighting conditions (indoor lighting – 77.78 % accuracy). Application is good at rejecting faces that should not be recognized (specificity – 90.70 %). The results are slightly worse when recognizing the faces that should be recognized (sensitivity – 85.71 %).
Keywords:face recognition, Android OS, Gabor filters, uniform local binary pattern


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica