| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Kombinatorika posplošenih Hanojskih stolpov : doktorska disertacija
Authors:ID Petr, Ciril (Author)
ID Klavžar, Sandi (Mentor) More about this mentor... New window
ID Milutinović, Uroš (Comentor)
Files:URL http://www.dlib.si/details/URN:NBN:SI:doc-FCUAES0E
 
Language:Slovenian
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:PEF - Faculty of Education
Abstract:Vpeljemo popoln opis stanja posplošenih Hanojskih stolpov in delni opis, s katerim opišemo le razmestitev vrhnjih ploščic. Definiramo preslikavo iz popolnega v delni opis, ugotavljamo njeno surjektivnost, injektivnost, preštejemo elemente v sliki te preslikave, to je vse različne delne opise, računamo moč praslik, navedemo pogoj, kdaj delnemu opisu ustreza enoličen popolni opis, in preštejemo vse take delne opise stanj. Definiramo graf stanj posplošenih Hanojskih stolpov. Ogledamo si nekatere inducirane podgrafe. Na dva načina preštejemo vse povezave v grafu, preštejemo tudi število prestavitev posamezne ploščice ter izračunamo minimalno, maksimalno in povprečno stopnjo grafa. Definiramo pet strategij reševanja problema posplošenih Hanojskih stolpov, med katerimi sta tudi domnevno optimalni Framova in Stewartova strategija. Dokažemo, da so enakovredne glede na število premikov ploščic. Dokažemo obstoj in opišemo vse 1-popolne kode v grafih Sierpińskega, ki predstavljajo grafe stanj posplošenih Hanojskih stolpov s spremenjenim pravilom prestavljanja ploščic. Ta rezultat je posplošitev znanih rezultatov o grafih Hanojskih stolpov s tremi položaji, pri katerih pa je pristop bistveno drugačen. Podamo tudi optimalen dekodirni algoritem, ki za dano 1-popolno kodo in točko grafa ugotovi, ali je kodna točka. Če ni, poišče njej najbližjo kodno točko.
Keywords:matematika, računalništvo, kombinatorika, Hanojski stolpi, algoritem, najkrajša pot, grafi Sierpińskega, 1-popolna koda
Publisher:[C. Petr]
Year of publishing:2004
Number of pages:102 str.
PID:20.500.12556/DKUM-52098 New window
UDC:519.1:004(043.3)
COBISS.SI-ID:13020761 New window
NUK URN:URN:SI:UM:DK:YYFL4BIN
Publication date in DKUM:10.07.2015
Views:2343
Downloads:86
Metadata:XML DC-XML DC-RDF
Categories:PEF
:
PETR, Ciril, 2004, Kombinatorika posplošenih Hanojskih stolpov : doktorska disertacija [online]. Doctoral dissertation. C. Petr. [Accessed 21 January 2025]. Retrieved from: http://www.dlib.si/details/URN:NBN:SI:doc-FCUAES0E
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:Combinatorics of generalized Towers of Hanoi
Abstract:We introduce a complete description of the state of generalized Towers of Hanoi, and partial description in which only positions of the top-most discs are specified. We define a mapping from the complete to the incomplete description, analyze its surjectivity and injectivity, count the elements in the image of this map, i.e. all the different partial descriptions, compute the cardinality of the preimages, give the condition for a partial description to have the unique complete description, and count all such partial descriptions. We define a state graph of generalized Towers of Hanoi. We look at some of the induced subgraphs. We count the number of edges in the graph in two different ways. We also count the number of moves of a certain disc, and calculate the minimum, maximum and average degree of the graph. Wedefine five strategies for solving the generalized Towers of Hanoi problem, including the presumed optimal strategies of Frame and Stewart. We prove that they are equivalent with respect to the number of discs moves. We prove the existence and describe all 1-perfect codes in Sierpiński graphs, which represent the state graphs of the generalized Towers of Hanoi with modified rules for moving discs. This result is a generalization of previously known results about the graphs of Towers of Hanoi with three pegs, where the approach is intrinsically different. We also present the optimal decoding algorithm, which for a given 1-perfect code and a vertex of a graph decides whether it is a code vertex, and if not, find its nearest code vertex.
Keywords:mathematics, computer science, combinatorics, Towers of Hanoi, algorithm, shortest path, Sierpiński graphs, 1-perfect code


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica