| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:A forbidden subgraph characterization of some graph classes using betweenness axioms
Authors:ID Changat, Manoj (Author)
ID Lakshmikuttyamma, Anandavally K. (Author)
ID Mathews, Joseph (Author)
ID Peterin, Iztok (Author)
ID Narasimha-Shenoi, Prasanth G. (Author)
ID Seethakuttyamma, Geetha (Author)
ID Špacapan, Simon (Author)
Files:URL http://dx.doi.org/10.1016/j.disc.2013.01.013
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Naj bo IG(x,y) interval najkrajših x,y-poti in JG(x,y) interval induciranih x,y-poti v povezanem grafu G. Obravnavani so naslednji trije aksiomi vmesnosti za množico V in R:VtimesVrightarrow2V: (i) xinR(u,y),yinR(x,v),xneqy,|R(u,v)|>2RightarrowxinR(u,v); (ii) xinR(u,v)RightarrowR(u,x)capR(x,v)=x; (iii) xinR(u,y),yinR(x,v),xneqy,RightarrowxinR(u,v). Karakteriziramo razred grafov, za katere IG izpolnjuje (i), razred grafov, za katere JG izpolnjuje (ii) in razred grafov, kjer oba IG in JG izpolnjujeta (iii). Karakterizacije so podane z prepovedanimi induciranimi podgrafi. Izkaže se, da je razred grafov, kjer IG izpolnjuje (i), pravi podrazred razdaljno dednih grafov in da je razred, kjer JG izpolnjuje (ii), pravi nadrazred razdaljno dednih grafov. Podani sta tudi aksiomatični karakterizaciji tetivnih in ptolomejskih grafov.
Keywords:matematika, teorija grafov, prepovedani podgrafi, inducirana pot, intervalna funkcija, aksiomi vmesnosti, tetivni grafi, razdaljno dedni grafi, mathematics, graph theory, forbidden subgraphs, induced path, interval function, betweenness axioms, chordal graphs, distance hereditary graphs
Year of publishing:2013
Number of pages:str. 951-958
Numbering:Vol. 313, iss. 8
PID:20.500.12556/DKUM-52009 New window
UDC:519.17
ISSN on article:0012-365X
COBISS.SI-ID:16567385 New window
NUK URN:URN:SI:UM:DK:JERZMLBH
Publication date in DKUM:10.07.2015
Views:1309
Downloads:104
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
CHANGAT, Manoj, LAKSHMIKUTTYAMMA, Anandavally K., MATHEWS, Joseph, PETERIN, Iztok, NARASIMHA-SHENOI, Prasanth G., SEETHAKUTTYAMMA, Geetha and ŠPACAPAN, Simon, 2013, A forbidden subgraph characterization of some graph classes using betweenness axioms. Discrete mathematics [online]. 2013. Vol. 313, no. 8, p. 951–958. [Accessed 1 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.disc.2013.01.013
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete mathematics
Shortened title:Discrete math.
Publisher:North-Holland
ISSN:0012-365X
COBISS.SI-ID:1118479 New window

Secondary language

Language:English
Title:Karakterizacija prepovedanih podgrafov nekaterih grafov z uporabo aksiomov vmesnosti
Abstract:Let IG(x,y) and JG(x,y) be the geodesic and induced path interval between x and y in a connected graph G, respectively. The following three betweenness axioms are considered for a set V and R:VtimesVrightarrow2V: (i) xinR(u,y),yinR(x,v),xneqy,|R(u,v)|>2RightarrowxinR(u,v); (ii) xinR(u,v)RightarrowR(u,x)capR(x,v)=x; (iii)xinR(u,y),yinR(x,v),xneqy,RightarrowxinR(u,v). We characterize the class of graphs for which IG satisfies (i), and the class for which JG satisfies (ii) and the class for which IG or JG satisfies (iii). The characterization is given by forbidden induced subgraphs. It turns out that the class of graphs for which IG satisfies (i) is a proper subclass of distance hereditary graphs and the class for which JG satisfies (ii) is a proper superclass of distance hereditary graphs. We also give an axiomatic characterization of chordal and Ptolemaic graphs.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica