Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
On a local 3-Steiner convexity
Authors:
ID
Brešar, Boštjan
(Author)
ID
Dravec, Tanja
(Author)
Files:
http://dx.doi.org/10.1016/j.ejc.2011.06.001
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Za dani graf
G
je Steinerjev interval množice vozlišč
W
s
u
b
s
e
t
V
(
G
)
množica tistih vozlišč, ki ležijo na kakem Steinerjevem drevesu glede na
W
. Množica
U
s
u
b
s
e
t
V
(
G
)
je
g
3
-konveksna v
G
, če Steinerjev interval poljubne trojice vozlišč iz
U
v celoti leži v
U
. Henning, Nielsen in Oellermann (2009) so dokazali, da graf
G
, v katerem so
j
-krogle
g
3
-konveksne za vsak
j
g
e
1
, ne vsebuje hiše niti grafov dvojčkov
C
4
kot induciranih podgrafov in vsak cikel v
G
dolžine vsaj šest je dobro premostljiv. V tem članku dokažemo, da velja tudi obrat tega izreka, s čimer okarakteriziramo grafe z
g
3
-konveksnimi kroglami.
Keywords:
matematika
,
teorija grafov
,
Steinerjev interval
,
razdalja
,
dobra premostljivost
,
mathematics
,
graph theory
,
Steiner interval
,
distance
,
well-bridgeness
Year of publishing:
2011
Number of pages:
str. 1222-1235
Numbering:
Vol. 32, no. 8
PID:
20.500.12556/DKUM-51909
UDC:
519.17
ISSN on article:
0195-6698
COBISS.SI-ID:
16079193
NUK URN:
URN:SI:UM:DK:JORLTX3K
Publication date in DKUM:
10.07.2015
Views:
1062
Downloads:
50
Metadata:
Categories:
Misc.
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BREŠAR, Boštjan and DRAVEC, Tanja, 2011, On a local 3-Steiner convexity.
European journal of combinatorics
[online]. 2011. Vol. 32, no. 8, p. 1222–1235. [Accessed 5 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.ejc.2011.06.001
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Steiner intervals, geodesic intervals, and betweenness
A note on Steiner intervals and betweenness
Many distances in planar graphs
n-ary transit functions in graphs
Vukičević, Damir(CT-SPL): Distinction between modifications of Wiener indices. (English summary). - MATCH Commun. Math. Comput. Chem. No. 47 (2003), 87--105.
Similar works from other repositories:
t-tonska barvanja
The Steiner Wiener index of a graph
Leonard triples and hypercubes
Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0
Arc-transitive cycle decompositions of tetravalent graphs
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Record is a part of a journal
Title:
European journal of combinatorics
Shortened title:
Eur. j. comb.
Publisher:
Academic Press
ISSN:
0195-6698
COBISS.SI-ID:
25427968
Secondary language
Language:
English
Title:
O lokalni 3-Steinerjevi konveksnosti
Abstract:
Given a graph
G
and a set of vertices
W
s
u
b
s
e
t
V
(
G
)
, the Steiner interval of
W
is the set of vertices that lie on some Steiner tree with respect to
W
. A set
W
s
u
b
s
e
t
V
(
G
)
is called
g
3
-convex in
G
, if the Steiner interval with respect to any three vertices from
U
lies entirely in
U
. Henning et al. (2009) proved that if every
j
-ball for all
j
g
e
1
is
g
3
-convex in a graph
G
, then
G
has no induced house nor twin
C
4
, and every cycle in
G
of length at least six is well-bridged. In this paper we show that the converse of this theorem is true, thus characterizing the graphs in which all balls are
g
3
-convex.
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back