| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:On a local 3-Steiner convexity
Authors:ID Brešar, Boštjan (Author)
ID Dravec, Tanja (Author)
Files:URL http://dx.doi.org/10.1016/j.ejc.2011.06.001
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Za dani graf G je Steinerjev interval množice vozlišč WsubsetV(G) množica tistih vozlišč, ki ležijo na kakem Steinerjevem drevesu glede na W. Množica UsubsetV(G) je g3-konveksna v G, če Steinerjev interval poljubne trojice vozlišč iz U v celoti leži v U. Henning, Nielsen in Oellermann (2009) so dokazali, da graf G, v katerem so j-krogle g3-konveksne za vsak jge1, ne vsebuje hiše niti grafov dvojčkov C4 kot induciranih podgrafov in vsak cikel v G dolžine vsaj šest je dobro premostljiv. V tem članku dokažemo, da velja tudi obrat tega izreka, s čimer okarakteriziramo grafe z g3-konveksnimi kroglami.
Keywords:matematika, teorija grafov, Steinerjev interval, razdalja, dobra premostljivost, mathematics, graph theory, Steiner interval, distance, well-bridgeness
Year of publishing:2011
Number of pages:str. 1222-1235
Numbering:Vol. 32, no. 8
PID:20.500.12556/DKUM-51909 New window
UDC:519.17
ISSN on article:0195-6698
COBISS.SI-ID:16079193 New window
NUK URN:URN:SI:UM:DK:JORLTX3K
Publication date in DKUM:10.07.2015
Views:1062
Downloads:50
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
BREŠAR, Boštjan and DRAVEC, Tanja, 2011, On a local 3-Steiner convexity. European journal of combinatorics [online]. 2011. Vol. 32, no. 8, p. 1222–1235. [Accessed 5 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.ejc.2011.06.001
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:European journal of combinatorics
Shortened title:Eur. j. comb.
Publisher:Academic Press
ISSN:0195-6698
COBISS.SI-ID:25427968 New window

Secondary language

Language:English
Title:O lokalni 3-Steinerjevi konveksnosti
Abstract:Given a graph G and a set of vertices WsubsetV(G), the Steiner interval of W is the set of vertices that lie on some Steiner tree with respect to W. A set WsubsetV(G) is called g3-convex in G, if the Steiner interval with respect to any three vertices from U lies entirely in U. Henning et al. (2009) proved that if every j-ball for all jge1 is g3-convex in a graph G, then G has no induced house nor twin C4, and every cycle in G of length at least six is well-bridged. In this paper we show that the converse of this theorem is true, thus characterizing the graphs in which all balls are g3-convex.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica