Loading [MathJax]/jax/output/HTML-CSS/jax.js
| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:A note on Steiner intervals and betweenness
Authors:ID Changat, Manoj (Author)
ID Lakshmikuttyamma, Anandavally K. (Author)
ID Mathews, Joseph (Author)
ID Peterin, Iztok (Author)
ID Narasimha-Shenoi, Prasanth G. (Author)
ID Tepeh, Aleksandra (Author)
Files:URL http://dx.doi.org/10.1016/j.disc.2011.08.009
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Geodetka in geodetski interval, ki je sestavljen iz vseh vozlišč, ki pripadajo kakšni geodetki med fiksnim parom vozlišč v povezanem grafu G, sta sestavni del metrične teorije grafov. Prav tako je znano, da je Steinerjevo drevo (multi) množice s k (k>2) vozlišči, posplošitev geodetke. V (B. Brešar, M. Changat, J. Mathews, I. Peterin, P. G. Narasimha-Shenoi, A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114--6125) so se avtorji ukvarjali s k-Steinerjevimi intervali S(u1,u2,ldots,uk) povezanih grafov (kgeq3) kot k-arnimi posplošitvami geodetskih intervalov. Analogno sta bila iz binarne na k-arno funkcijo posplošena tudi vmesnostni aksiom (b2) in monotoni aksiom(m) kot: za vsa vozlišča u1,ldots,uk,x,x1,ldots,xkinV(G), ki niso nujno različna $(b2)quadxinS(u1,u2,ldots,uk)RightarrowS(x,u2,ldots,uk)subseteqS(u1,u2,ldots,uk),$ $(m)quadx1,ldots,xkinS(u1,ldots,uk)RightarrowS(x1,ldots,xk)subseteqS(u1,ldots,uk).$ Avtorji so v zgoraj omenjenem članku domnevali, da 3-Steinerjev interval povezanega grafa G zadošča vmesnostnemu aksiomu (b2) natanko tedaj, ko je vsak blok grafa G geodetski z diametrom največ 2. V tem delu dokažemo to domnevo. Pri tem dodatno dokažemo, da v vsakem geodetskem bloku z diametrom vsaj 3 obstaja izometrični cikel dolžine 2k+1, k>2. Prav tako predstavimo dodaten aksiom (b2(2)), ki je smiseln le za 3-Steinerjeve intervale in pokažemo, da je le ta ekvivalenten monotonemu aksiomu.
Keywords:matematika, teorija grafov, Steinerjev interval, geodetski graf, vmesnost, mathematics, graph theory, Steiner interval, geodetic graph, betweenness
Year of publishing:2011
Number of pages:Str. 2601-2609
Numbering:Vol. 311, iss. 22
PID:20.500.12556/DKUM-51908 New window
UDC:519.17
ISSN on article:0012-365X
COBISS.SI-ID:16078937 New window
NUK URN:URN:SI:UM:DK:SNZ0S68F
Publication date in DKUM:10.07.2015
Views:1032
Downloads:87
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
CHANGAT, Manoj, LAKSHMIKUTTYAMMA, Anandavally K., MATHEWS, Joseph, PETERIN, Iztok, NARASIMHA-SHENOI, Prasanth G. and TEPEH, Aleksandra, 2011, A note on Steiner intervals and betweenness. Discrete mathematics [online]. 2011. Vol. 311, no. 22, p. 2601–2609. [Accessed 31 March 2025]. Retrieved from: http://dx.doi.org/10.1016/j.disc.2011.08.009
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share



Similar works from other repositories:

No similar works found

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete mathematics
Shortened title:Discrete math.
Publisher:North-Holland
ISSN:0012-365X
COBISS.SI-ID:1118479 New window

Secondary language

Language:English
Title:Notica o 3-Steinerjevih intervalih in vmesnost
Abstract:The geodesic and geodesic interval, namely the set of all vertices lying on geodesics between a pair of vertices in a connected graph, is a part of folklore in metric graph theory. It is also known that Steiner tree of a (multi) set with k (k>2) vertices, generalizes geodesics. In (B. Brešar, M. Changat, J. Mathews, I. Peterin, P. G. Narasimha-Shenoi, A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114-6125) the authors studied the k-Steiner intervals S(u1,u2,ldots,uk) on connected graphs (kgeq3) asthe k-ary generalization of the geodesic intervals. The analogous betweenness axiom (b2) and the monotone axiom (m) were generalized from binary to k-ary functions as: for any u1,ldots,uk,x,x1,ldots,xkinV(G) which are not necessarily distinct, $(b2)quadxinS(u1,u2,ldots,uk)RightarrowS(x,u2,ldots,uk)subseteqS(u1,u2,ldots,uk),$ $(m)quadx1,ldots,xkinS(u1,ldots,uk)RightarrowS(x1,ldots,xk)subseteqS(u1,ldots,uk).$$Theauthorsconjecturedthatthe$3-Steiner interval on a connected graph G satisfies the betweenness axiom (b2) if and only if each block of G is geodetic of diameter at most 2. In this paper we settle this conjecture. For this we show that there exists an isometric cycle of length 2k+1, k>2, in every geodetic block of diameter at least 3. We also introduce another axiom (b2(2)), which is meaningful only to 3-Steiner intervals and show that this axiom is equivalent to the monotone axiom.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica