| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Steiner intervals, geodesic intervals, and betweenness
Authors:ID Brešar, Boštjan (Author)
ID Changat, Manoj (Author)
ID Mathews, Joseph (Author)
ID Peterin, Iztok (Author)
ID Narasimha-Shenoi, Prasanth G. (Author)
ID Tepeh, Aleksandra (Author)
Files:URL http://dx.doi.org/10.1016/j.disc.2009.05.022
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:Koncept k-Steinerjevih intervalov naravno posplošuje geodetske (binarne) intervale. Definiran je kot preslikava S:VtimescdotstimesVlongrightarrow2V, kjer je S(u1,dots,uk) množica tistih vozlišč grafa G, ki ležijo na kakem Steinerjevem drevesu glede na multimnožico W=u1,dots,uk vozlišč iz G. V tem članku za vsako naravno število k dokažemo karakterizacijo razreda tistih grafov, v katerih imajo vsi k-Steinerjevi intervali t.i. lastnost unije, ki pravi, da S(u1,ldots,uk) sovpada z unijo geodetskih intervalov I(ui,uj) med vsemi pari vozlišč iz W. Izkaže se, da tedaj, ko je k>3, ta razred sovpada z razredom grafov, v katerih k-Steinerjev interval zadošča aksiomu monotonosti(m), kot tudi z razredom grafov, v katerih k-Steinerjev interval zadošča aksiomu (b2), ki sta pogoja iz teorije vmesnosti. In sicer preslikava S zadošča aksiomu (m), če iz x1,dots,xkinS(u1,dots,uk) sledi S(x1,dots,xk)subseteqS(u1,dots,uk); ter S zadošča (b2), če iz xinS(u1,u2,dots,uk) sledi S(x,u2,dots,uk)subseteqS(u1,dots,uk). V primeru k=3 so ti trije razredi grafov različni in za razreda grafov, v katerih Steinerjev interval zadošča lastnosti unije oz. aksiomu monotonosti (m), dokažemo strukturni karakterizaciji. Prav tako predstavimo več delnih ugotovitev za razred grafov, v katerih 3-Steinerjev interval zadošča aksimu (b2), ki vodijo do domneve, da so to natanko tisti grafi, v katerih je vsak blok geodetski graf z diametrom 2.
Keywords:matematika, teorija grafov, Steinerjev interval, geodetski interval, razdalja, vmesnost, monotonost, bločni graf, mathematics, graph theory, Steiner interval, geodesic interval, distance, betweenness, monotonicity, block graph
Year of publishing:2009
Number of pages:str. 6114-6125
Numbering:Vol. 309, iss. 20
PID:20.500.12556/DKUM-51807 New window
UDC:519.17
ISSN on article:0012-365X
COBISS.SI-ID:15334233 New window
NUK URN:URN:SI:UM:DK:ZHGHZXK8
Publication date in DKUM:10.07.2015
Views:1165
Downloads:95
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
BREŠAR, Boštjan, CHANGAT, Manoj, MATHEWS, Joseph, PETERIN, Iztok, NARASIMHA-SHENOI, Prasanth G. and TEPEH, Aleksandra, 2009, Steiner intervals, geodesic intervals, and betweenness. Discrete mathematics [online]. 2009. Vol. 309, no. 20, p. 6114–6125. [Accessed 1 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.disc.2009.05.022
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete mathematics
Shortened title:Discrete math.
Publisher:North-Holland
ISSN:0012-365X
COBISS.SI-ID:1118479 New window

Secondary language

Language:Unknown
Title:Steinerjevi intervali, geodetski intervali in vmesnost
Abstract:The concept of the k-Steiner interval is a natural generalization of the geodesic (binary) interval. It is defined as a mapping S:VtimescdotstimesVlongrightarrow2V such that S(u1,...,uk) consists of all vertices in G that lie on some Steiner tree with respect to a multiset W=u1,...,uk of vertices from G. In this paper we obtain, for each k, a characterization of the class of graphs in which every k-Steiner interval S has the so-called union property, which says that S(u1,...,uk) coincides with the union of geodesic intervals I(ui,uj) between all pairs from W. It turns out that, as soon as k>3, this class coincides with the class of graphs in which the k-Steiner interval enjoys the monotone axiom (m), respectively (b2) axiom, the conditions from betweenness theory. Notably, S satisfies (m), if x1,...,xkinS(u1,...,uk) implies S(x1,...,xk)subseteqS(u1,...,uk), and S satisfies (b2) if xinS(u1,u2,...,uk) implies S(x,u2,...,uk)subseteqS(u1,...,uk). In the case k=3, these three classes are different, and we give structural characterizations of graphs for which their Steiner interval S satisfies the union property as well as the monotone axiom (m). We also prove several partial observations on the class ofgraphs in which the 3-Steiner interval satisfies (b2), which lead to the conjecture that these are precisely the graphs in which every block is a geodetic graph with diameter at most two.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica