Loading [MathJax]/jax/output/HTML-CSS/jax.js
| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Cube intersection concepts in median graphs
Authors:ID Brešar, Boštjan (Author)
ID Kraner Šumenjak, Tadeja (Author)
Files:URL http://dx.doi.org/10.1016/j.disc.2008.07.032
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:FERI - Faculty of Electrical Engineering and Computer Science
Abstract:Obravnavamo različne razrede presečnih grafov maksimalnih hiperkock medianskih grafov. Za medianski graf G in celo število kge0 je presečni graf mathcalQk(G) definiran kot tisti graf, katerega vozlišča so maksimalne hiperkocke (z ozirom na inkluzijo) grafa G in sta dve vozlišči Hx in Hy v njem sosednji tedaj, ko presek HxcapHy vsebuje podgraf izomorfen Qk. V članku predstavimo karakterizacije kličnih grafov z uporabo omenjenih presečnih konceptov, ko je k>0. Vpeljemo tudi t.i. maksimalno 2-presečni graf maksimalnih hiperkock medianskega grafa G, ki ga označimo z mathcalQm2(G) in predstavlja tisti graf, katerega vozlišča somaksimalne hiperkocke grafa G, dve vozlišči v njem pa sta sosednji, če presek pripadajočih hiperkock ni strogo vsebovan v kakem preseku dveh maksimalnih hiperkock. Dokažemo, da je graf H brez induciranih diamantov, če in samo če obstaja takšen medianski graf G, da je H izomorfen mathcalQm2(G). Obravnavamo tudi konvergenco medianskega grafa h grafu na enem vozlišču glede na vse vpeljane operacije.
Keywords:matematika, teorija grafov, kartezični produkt, medianski graf, graf kock, presečni graf, konveksnost, mathematics, graph theory, Cartesian product, median graph, cube graph, intersection graph, convexity
Year of publishing:2009
Number of pages:str. 2990-2997
Numbering:Vol. 309, iss. 10
PID:20.500.12556/DKUM-51791 New window
UDC:519.17
ISSN on article:0012-365X
COBISS.SI-ID:15167065 New window
NUK URN:URN:SI:UM:DK:XIOAADIY
Publication date in DKUM:10.07.2015
Views:1369
Downloads:106
Metadata:XML DC-XML DC-RDF
Categories:Misc.
:
BREŠAR, Boštjan and KRANER ŠUMENJAK, Tadeja, 2009, Cube intersection concepts in median graphs. Discrete mathematics [online]. 2009. Vol. 309, no. 10, p. 2990–2997. [Accessed 9 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.disc.2008.07.032
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Discrete mathematics
Shortened title:Discrete math.
Publisher:North-Holland
ISSN:0012-365X
COBISS.SI-ID:1118479 New window

Secondary language

Language:Unknown
Title:Presečni koncepti kock v medianskih grafih
Abstract:We study different classes of intersection graphs of maximal hypercubes of median graphs. For a median graph G and kge0, the intersection graph mathcalQk(G) is defined as the graph whose vertices are maximal hypercubes (by inclusion) in G, and two vertices Hx and Hy in mathcalQk(G) are adjacent whenever the intersection HxcapHy contains a subgraph isomorphic to Qk. Characterizations of clique-graphs in terms of these intersection concepts when k>0, are presented. Furthermore, we introduce the so-called maximal 2-intersection graph of maximal hypercubes of a median graph G, denoted mathcalQm2(G) whose vertices are maximal hypercubes of G, and two vertices are adjacent if the intersection of the corresponding hypercubes is not a proper subcube of some intersection of two maximal hypercubes. We show that a graph H is diamond-free if and only if there exists a median graph G such that H is isomorphic to mathcalQm2(G). We also study convergence of median graphs to the one-vertex graph with respect to all these operations.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica