| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:UGOTAVLJANJE GENSKIH PREDIKTORJEV S POMOČJO INTELIGENTNIH SISTEMOV
Authors:ID Rednjak, Nejc (Author)
ID Kokol, Peter (Mentor) More about this mentor... New window
Files:.pdf MAG_Rednjak_Nejc_2015.pdf (1,75 MB)
MD5: 41F31EEBFCA4DFBE428710BFAC7D2AEB
 
Language:Slovenian
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FZV - Faculty of Health Sciences
Abstract:Pri strojnem učenju (angl. Machine Learning) gre za pridobivanje znanja na podlagi izkušenj. Ne gre za učenje na pamet, ampak za iskanje pravil v učnih podatkih. Najbolj znane metode strojnega učenja so odločitvena drevesa (DT), metoda podpornih vektorjev (SVM) in nevronske mreže (NN). Metode strojnega učenja so nam v pomoč pri ugotavljanju genskih prediktorjev. Algoritmi strojnega učenja imajo prav tako pomembno vlogo pri diagnosticiranju rakavih obolenj. V magistrskem delu smo opisali najbolj znane metode strojnega učenja in jih preizkusili na podatkovni bazi AP_Colon_Kidney. Uporabili smo podatkovno bazo iz spletne zbirke GEMLeR, ki vsebuje podatke o genski ekspresiji za več kot 2000 vzorcev tumorjev. Raziskali smo tudi, kateri geni so najbolj izraženi v primeru rakavega obolenja debelega črevesa in ledvic.
Keywords:strojno učenje, odločitvena drevesa, nevronske mreže, metoda podpornih vektorjev, gen, podatkovna baza.
Place of publishing:Maribor
Publisher:[N. Rednjak]
Year of publishing:2015
PID:20.500.12556/DKUM-47809 New window
UDC:575(043.2)
COBISS.SI-ID:2144932 New window
NUK URN:URN:SI:UM:DK:KMGLYBXF
Publication date in DKUM:24.09.2015
Views:3143
Downloads:193
Metadata:XML DC-XML DC-RDF
Categories:FZV
:
REDNJAK, Nejc, 2015, UGOTAVLJANJE GENSKIH PREDIKTORJEV S POMOČJO INTELIGENTNIH  SISTEMOV [online]. Master’s thesis. Maribor : N. Rednjak. [Accessed 25 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=47809
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Title:DETERMINING GENETIC PREDICTORS BY USING INTELLIGENT SYSTEMS
Abstract:With machine learning we acquire knowledge based on experience. It is not about learning by memorization but to search the rules in the learning data. The most known representatives of machine learning are decision trees (DT), support vector machines (SVM) and neural networks (NN). Machine learning methods help us to identify genetic predictors. The machine learning algorithms also play an important role in cancer diagnosis. In our master thesis we describe the most known machine learning methods and test them on an AP_Colon_Kidney database. For these master thesis we have used a database from an GEMLeR online collection which contains data on gene expression with more than 2,000 samples of tumors. We have also investigated which genes are the most xpressed in the case of colon and kidney cancer.
Keywords:machine learning, decision trees, neural networks, support vector machine, gene, database.


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica