Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Automated and intelligent programming of cnc machine tools : doctoral thesis
Authors:
ID
Gjelaj, Afrim
(Author)
ID
Balič, Jože
(Mentor)
More about this mentor...
ID
Ficko, Mirko
(Comentor)
Files:
DR_Gjelaj_Afrim_i2014.pdf
(1,57 MB)
MD5: 1782D1A043119BF71FFACF4F1784E62C
Language:
English
Work type:
Dissertation
Typology:
2.08 - Doctoral Dissertation
Organization:
FS - Faculty of Mechanical Engineering
Abstract:
Nowadays, many scientists focus on increasing the level of automation, respectively flexibility in manufacturing systems. In addition, automated programming of CNC machine tools has reached a high level of machining operations. However, it is still impossible for a machine to manipulate completely in an autonomous way. Special attention in this doctoral thesis is focused on the automated programming of CNC machine tools regarding artificial intelligence. The purpose of automated programming is to improve quality and to fulfil the requirements of manufacturing industry and provide commercial solutions. This thesis also provides a description of artificial intelligence usage in order to solve optimal tool path-length and tool selection, as well as the preparation of planned technology. Firstly, the automated programming of CNC machine tools enjoys great success when applying artificial intelligence in regard to the machining processes. Choices of path length and tool selection are analysed in great detail in order to ascertain the optimal problems of tool path- length and tool selection. However, in order to achieve automated and intelligent CNC programming of machine tools, their flexibilities are of major importance. Automation today tends to improve and implement manufacturing flexibility at a strategic level. This means increasing the degree of flexibility whilst at the same time increasing the degree of automation regarding CNC machine tools. In addition to the above-mentioned investigated problems, the influences of cutting force (Fc), power cutting (Pc), tool life (T) and surface roughness (Ra) as functions of tool path- length are also analysed. Analytical and mathematical models are optimised using a multi-objective genetic algorithm (MOGA). MOGA enables optimisation by employing two or more equations simultaneously. Another problem for the automated and intelligent CNC programming of machine tools focuses on the application of Discrete Systems (DS). The discrete system in our work focuses on analysing cutting force (Fc) in regard to the turning operation.
Keywords:
inteligent CNC programming
,
intelligent manufacturing
,
discrete system
,
automated programming
,
multiobjective genetic algorithm MOGA
Place of publishing:
[Maribor
Place of performance:
[Maribor
Publisher:
A. Gjelaj]
Year of publishing:
2014
Year of performance:
2014
Number of pages:
XV, 140 f.
PID:
20.500.12556/DKUM-46159
UDC:
621.941-52(043.3)
COBISS.SI-ID:
18385686
NUK URN:
URN:SI:UM:DK:6DWH5MTT
Publication date in DKUM:
23.01.2015
Views:
3247
Downloads:
413
Metadata:
Categories:
KTFMB - FS
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GJELAJ, Afrim, 2014,
Automated and intelligent programming of cnc machine tools : doctoral thesis
[online]. Doctoral dissertation. Maribor : A. Gjelaj. [Accessed 23 January 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=46159
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Advantages and disadvantages of the unification of rules simplifying cross-border debt collection
Postopek za izdajo plačilnega naloga na Nizozemskem
Uredbe (ES) št. 805/2004, (ES) št. 1896/2006 in (ES) št. 861/2007 ter njihova implementacija v avstrijskem pravu
Davčne posledice odpisovanja terjatev
Stvarnopravna zavarovanja pri nakupu in prodaji nepremičnin
Similar works from other repositories:
Neposestna zastava premičnin
Primerjalna analiza postopka prisilne poravnave
Načelo absolutnih prednosti
Učinkovita izterjava neplačane premije
Obvezno zavarovanje odgovornosti gospodarskih subjektov
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Title:
Samodejno in inteligentno programiranje CNC strojev
Abstract:
Razvoj obdelovalnih sistemov poteka danes v smeri vse večje avtomatizacije in njihove prilagodljivosti. To je povzročilo tudi pospešen razvoj sistemov za avtomatsko programiranje CNC strojev, ki so danes v veliki meri avtomatizirani. Popolno avtomatizacijo je nemogoče doseči. Zato je poudarek te doktorske naloge na razvoju sistema avtomatskega programiranja CNC strojev, ki je podprt z metodami umetne inteligence. Tak sistem mora omogočiti avtomatizacijo CNC programiranja na inteligenten način, da se tako dvigne kvaliteta programiranja, zanesljivost in določi optimalno zaporedje obdelave ter izbere optimalne rezalne pogoje. Doktorska disertacija obravnava pregled različnih pristopov k samodejnemu programiranju CNC obdelovalnih strojev in predstavlja prispevek k razvoju takšnega samodejnega inteligentnega programiranja CNC-obdelovalnih strojev, ki bo uporabno v industrijski praksi. Raziskana in analizirana sta dva trenda razvoja in raziskav, ki med seboj hkrati konkurirata in se dopolnjujeta; to je samodejno programiranje, ki vključuje deterministične pristope in inteligentno samodejno programiranje. Poleg tega so raziskani in opisani postopki CNC-programiranja ter stanje med komercialno dobavljivimi programi in raziskavami na tem področju. Izpostavljeni so cilji samodejnega in/ali inteligentnega programiranja in izdelan je ustrezni model, ki uporablja večkriterijsko optimizacijo, kjer so cilji podvrženi dinamičnemu tehniško-ekonomskemu okolju, ki pogosto menja pomembnost ciljev. Zaradi teh omejitev, je uporabljena večkriterijska optimizacija z genetskimi algoritmi (Ang.: Multi-Objective Genetic Algorithm - MOGA) in diskretna predstavitev problema. Večkriterijska optimizacija je logično nadaljevanje dosedanjih raziskav na področju določanja optimalnega programa, ker človek-strokovnjak izvaja prav tako večkriterijsko optimizacijo pri svojem delu. Obdelava na CNC-rezkalnih strojih vključuje tehniške, ekonomske in organizacijske kriterije, ki jih človek mimogrede upošteva, zato umetni sistem, ki uporablja enokriterijsko optimizacijo ne zagotavlja dovolj dobrih rezultatov za uporabo v praksi. Diskretna predstavitev problema poenostavi problem, zagotavlja omejitev iskalnega prostora in tako izboljša možnost uporabe metode v realnem času.
Keywords:
inteligentno CNC programiranje
,
inteligentna proizvodnja
,
diskretni sistemi
,
avtomatsko programiranje
,
večkriterijski genetski algoritem
,
MOGA
,
doktorske disertacije
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back