Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Vpliv podobnosti na uspešnost klasifikacije evolucijskih odločitvenih dreves
Authors:
ID
Bošnjak, Leon
(Author)
ID
Podgorelec, Vili
(Mentor)
More about this mentor...
Files:
MAG_Bosnjak_Leon_2014.pdf
(3,33 MB)
MD5: 1829813DEEC68B9CF851C997725ECBC0
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Magistrska naloga obravnava proces gradnje klasifikacijskih odločitvenih dreves z genetskimi algoritmi, v sklopu katerega se osredotoča na ocenjevanje uspešnosti zgrajenih dreves ter hitrosti oziroma učinkovitosti algoritma. Standardni način evolucijske gradnje odločitvenih dreves predvideva uporabo naključne selekcije dveh primerkov za križanje dreves, kar lahko povzroči prehitro konvergenco k lokalno optimalni rešitvi. Z namenom ohranjanja raznolikosti populacije tekom evolucije je bilo implementiranih pet pristopov vrednotenja podobnosti med drevesi, ki so bili uporabljeni v okviru selekcije primerkov za križanje. Pristopi križanja med seboj različnih in podobnih dreves so bili primerjani s standardnim načinom brez upoštevanja podobnosti na enaindvajsetih različnih podatkovnih množicah z namenom ugotavljanja vpliva podobnosti na uspešnost in učinkovitost algoritma.
Keywords:
odločitvena drevesa
,
genetski algoritmi
,
klasifikacija
,
podobnost
Place of publishing:
Maribor
Publisher:
[L. Bošnjak]
Year of publishing:
2014
PID:
20.500.12556/DKUM-44768
UDC:
659.21:316.773.3(043.2)
COBISS.SI-ID:
17980694
NUK URN:
URN:SI:UM:DK:C3UOAUC9
Publication date in DKUM:
26.06.2014
Views:
2324
Downloads:
271
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BOŠNJAK, Leon, 2014,
Vpliv podobnosti na uspešnost klasifikacije evolucijskih odločitvenih dreves
[online]. Master’s thesis. Maribor : L. Bošnjak. [Accessed 3 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=44768
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Obsevanje pri raku prostate
Biokemična ponovitev pri raku prostate
Zdravljenje raka prostate
Radioterapija raka prostate
Epidemiologija raka prostate
Similar works from other repositories:
Evaluation of patient's position correction with dual registration for radiotherapy of prostate cancer
IMPORTANCE OF EARLY DETECTION OF PROSTATE CANCER
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
The impact of similarity on the classification performance of evolutionary decision trees
Abstract:
The master's thesis deals with the process of building classification decision trees with genetic algorithms, focusing on the assessment of performance of constructed trees, as well as the speed and efficiency of the algorithm. The standard evolutionary method of building decision trees assumes the use of random selection of two trees for crossover, which can lead to premature convergence to a local, often sub-optimal solution. In order to maintain the diversity of the population over the course of evolution, five different approaches to evaluate the similarity between trees were implemented. The approaches of both similar and diverse tree crossover were compared to the standard approach on twenty-one different data sets to determine the impact of similarity on the effectiveness and efficiency of the algorithm.
Keywords:
decision trees
,
genetic algorithms
,
classification
,
similarity
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back