Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
KVAZIPRIREJANJA V DVODELNIH GRAFIH
Authors:
ID
Kren, Matej
(Author)
ID
Brešar, Boštjan
(Mentor)
More about this mentor...
Files:
MAG_Kren_Matej_2014.pdf
(1,03 MB)
MD5: AB2C8976A287231A023CBD39F603C22E
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
V magistrskem delu obravnavamo posplošitve problema iskanja največjega prirejanja v dvodelnem grafu. Dan je dvodelen graf G=(A+B,E) in funkcija potreb, ki vsakemu vozlišču v množici B priredi t.i. potrebo vozlišča. V problemu kvaziprirejanja v dvodelnem grafu G iščemo takšno podmnožico F množice povezav E, da ima vsako vozlišče iz B vsaj toliko F-incidenčnih povezav kot ima potrebo, vozlišča iz množice A pa imajo kar se da uravnoteženo število pripadajočih F-incidenčnih povezav. Problem lahko variiramo tako, da vozliščem iz množice A omejimo število F-incidenčnih povezav s kapacitetno funkcijo in tedaj govorimo o f,g-kvaziprirejanju. V tem primeru nas zanima ali obstaja množica F, ki zadošča kapacitetni funkciji in funkciji potreb v danem dvodelnem grafu. V prvem poglavju so opisani osnovni pojmi in definicije, ki jih potrebujemo v nadaljevanju. V drugem poglavju posplošimo definicijo prirejanja in nekaterih pripadajočih pojmov, ki nam pomagajo dokazati lastnosti kvaziprirejanj. V tretjem poglavju poiščemo učinkovit algoritem za iskanje g-kvaziprirejanja, ki mu dokažemo pravilnost delovanja ter linearno časovno in prostorsko zahtevnost. Algoritem v nadaljevanju dopolnimo tako, da učinkovito poišče optimalno g-kvaziprirejanje ob dodajanju ali odvzemanju vozlišča. V zadnjem poglavju predstavimo odločitveni problem obstoja f,g-kvaziprirejanja. Kot rezultat navedemo široko posplošitev Hallovega poročnega izreka.
Keywords:
prirejanje
,
dvodelen graf
,
kvaziprirejanje
,
madžarska metoda
,
Hallov poročni izrek.
Place of publishing:
Maribor
Publisher:
[M. Kren]
Year of publishing:
2014
PID:
20.500.12556/DKUM-44100
UDC:
519.172.5(043.2)
COBISS.SI-ID:
20528136
NUK URN:
URN:SI:UM:DK:GL7XTFWN
Publication date in DKUM:
14.05.2014
Views:
1820
Downloads:
161
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KREN, Matej, 2014,
KVAZIPRIREJANJA V DVODELNIH GRAFIH
[online]. Master’s thesis. Maribor : M. Kren. [Accessed 12 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=44100
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Analiza proizvodnje električne energije v Gorenjskih elektrarnah v letu 2017
Analiza proizvodnje električne energije v Gorenjskih elektrarnah v letu 2018
Analiza proizvodnje električne energije v Gorenjskih elektrarnah v letu 2016
Analiza proizvodnje električne energije Gorenjskih elektrarn v letu 2015
Zunanja presoja vodenja kakovosti v Gorenjskih elektrarnah
Similar works from other repositories:
Analiza proizvodnje električne energije v mali hidroelektrarni
Prosti trg za električno energijo
Ocena spremenljivosti proizvodnje električne energije v malih hidroelektrarnah
Politološki aspekti decentralizacije proizvodnje električne energije
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
QUASI-MATCHINGS IN BIPARTITE GRAPHS
Abstract:
In master thesis we discuss generalizations of the problem of determining maximum matching in bipartite graphs. A bipartite graph G=(A+B,E), and a need function that assigns the so-called need of every vertex in B, are given. In the quasi-matching problem in a bipartite graph G we seek a subset of edges F, where every vertex from B has at least as many F-incident edges as its need, and vertices in A have the number of F-incident edges as balanced as possible. We can vary the problem by limiting the number of F-incident edges with a capacity function to vertices from A, and we talk about f,g-quasi-matching. In that case we are interested in, whether a set F that fulfils the capacity and need function in the bipartite graph, actually exists. The first chapter introduces basic concepts and definitions that are needed for further understanding of the thesis. In the second chapter we generalize the definition of matching and some concepts that help us to prove some quasi-matching properties. In third chapter we present an efficient algorithm for finding g-quasi-matching in a bipartite graph, for which we prove correctness and linear time and space complexity. In the last part of the chapter we improve the algorithm so that it efficiently finds g-quasi-matching if a vertex is added or taken. In the last chapter we present decision problem of existence of f,g-quasi-matching. As a result generalization of Hall's marriage theorem is given.
Keywords:
matching
,
bipartite graph
,
quasi-matching
,
Hungarian method
,
Hall's marriage theorem
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back