Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Limite inverznih limit
Authors:
ID
Merhar, Matej
(Author)
ID
Banič, Iztok
(Mentor)
More about this mentor...
ID
Milutinović, Uroš
(Comentor)
Files:
DR_Merhar_Matej_2013.pdf
(305,50 KB)
MD5: 14EDE63F7A59400337625D5F1565BDA5
Language:
Slovenian
Work type:
Dissertation
Typology:
2.08 - Doctoral Dissertation
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
V doktorski disertaciji se obravnava vprašanje ali iz konvergence grafov navzgor polzveznih veznih funkcij sledi konvergenca ustreznih pripadajočih inverznih limit za konstantna inverzna zaporedja kompaktnih metričnih prostorov. V uvodnem delu se vpeljejo osnovni pojmi kot so navzgor polzvezne funkcije, inverzna zaporedja in inverzne limite. V osrednjem delu se na konkretnih primerih pokaže, da je odgovor na zgoraj zastavljeno vprašanje v splošnem negativen in v obliki izrekov poda dodatne pogoje za vezne funkcije, ki zagotavljajo, da iz konvergence njihovih grafov sledi konvergenca pripadajočih inverznih limit. Med drugim se dokaže, da če so vezne funkcije surjektivne in funkcija h kateri njihovi grafi konvergirajo enolična, tedaj tudi zaporedje pripadajočih inverznih limit konvergira. Te pogoje se v nadaljevanju nekoliko omili in posploši na splošna inverzna zaporedja. Predstavi se tudi uporaba navedenih rezultatov za konstrukcijo poti v hiperprostorih. V zaključnem poglavju se navede še nekatera odprta vprašanja, ki odpirajo možnost nadaljnjega raziskovanja.
Keywords:
kontinuum
,
hiperprostor
,
limita
,
inverzna limita
,
zvezna preslikava
,
navzgor polzvezna preslikava
,
pot
Place of publishing:
[S. l.
Publisher:
M. Merhar]
Year of publishing:
2013
PID:
20.500.12556/DKUM-42550
UDC:
515.126(043.4)
COBISS.SI-ID:
269163264
NUK URN:
URN:SI:UM:DK:NNUIEWPH
Publication date in DKUM:
08.10.2013
Views:
2530
Downloads:
132
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MERHAR, Matej, 2013,
Limite inverznih limit
[online]. Doctoral dissertation. S. l. : M. Merhar. [Accessed 22 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=42550
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
Limits of inverse limits
Abstract:
In the thesis the following question is considered. Given a constant inverse sequences with compact metric spaces and upper semi-continuous set-valued functions is it true that if the graphs of the these functions converge, then so do the corresponding inverse limits? In the first part of the thesis basic definitions and notations are given such as upper semi-continuous functions, sequences and inverse limits. It is shown that in general the answer to the above question is negative and proved in forms of theorems that under certain conditions for the bonding functions the convergence of the corresponding inverse limits follows from the convergence of the graphs of the bonding functions. Among other results it is shown that if the bonding functions are surjective and the function they converge to is single valued, then the convergence of the graphs of the bonding functions implies the convergence of the corresponding inverse limits. These conditions are then replaced by certain milder conditions and generalized to non-constant inverse sequences. Also an application of the above results for the construction of paths in hyperspaces is provided. The thesis is concluded by some open questions that give the possibility of further research.
Keywords:
continua
,
hyperspace
,
limit
,
invers limit
,
continuous function
,
upper semi-continuous function
,
path
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back