Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
SAMODEJNA KLASIFIKACIJA GLASBENIH ŽANROV ZVOČNIH POSNETKOV
Authors:
ID
Rupnik, Dal
(Author)
ID
Holobar, Aleš
(Mentor)
More about this mentor...
Files:
MAG_Rupnik_Dal_2013.pdf
(3,50 MB)
MD5: 9E2B388C8606473DCED84730EFC2E2F0
Language:
Slovenian
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
V magistrskem delu predstavimo sistem, ki na mobilni platformi iOS samodejno klasificira glasbeni žanr zvočnih posnetkov na podlagi zajetih vrednosti značilnic. Sistem za posamezen posnetek izračuna vektor značilnic, ki opredeljujejo ritmične, tonske in energetske lastnosti posnetka. Na osnovi učne množice vektorjev z označenim glasbenim žanrom se sistem nauči značilnosti posameznih žanrov, na podlagi le teh pa kasneje opravlja klasifikacijo testnih posnetkov, ki nimajo označenega glasbenega žanra. Klasifikacijo smo izvedli z metodo podpornih vektorjev in pri tem na 1.000 testnih posnetkih dosegli 64 % natančnost ločevanja med naslednjimi desetimi žanri: blues, klasična glasba, country, disco, hip hop, jazz, metal, pop, reggae in rock.
Keywords:
klasifikacija glasbenih žanrov
,
analiza posnetka
,
značilnice glasbe
,
strojno učenje
,
metoda podpornih vektorjev
,
mobilna platforma
Place of publishing:
Maribor
Publisher:
[D. Rupnik]
Year of publishing:
2013
PID:
20.500.12556/DKUM-41907
UDC:
004.9'1(043.2)
COBISS.SI-ID:
17346326
NUK URN:
URN:SI:UM:DK:1MNPJ3X9
Publication date in DKUM:
13.09.2013
Views:
2482
Downloads:
226
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
RUPNIK, Dal, 2013,
SAMODEJNA KLASIFIKACIJA GLASBENIH ŽANROV ZVOČNIH POSNETKOV
[online]. Master’s thesis. Maribor : D. Rupnik. [Accessed 25 March 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=41907
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Searching for similar works...
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
CLASSIFICATION OF AUDIO SIGNALS INTO MUSIC GENRES
Abstract:
In this work, we present a mobile application for iOS, which determines musical genre of audio signal based on the features extracted from the signal. For each audio signal a feature vector that represents timbral, rhythmic and energetic properties of the signal is calculated. Based on a training set of feature vectors with labelled musical genre, system learns the characteristics of specific genre and uses this information to classify unlabelled audio signals into multiple musical genres. Classification is performed by support vector machine unsupervised machine learning algorithm. When tested on 1,000 audio signals with 10 different genres, the implemented classifier yielded accuracy of 64 %.
Keywords:
music genre classification
,
feature extraction
,
audio signal analysis
,
machine learning
,
support vector machine
,
moblie platform
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back