| | SLO | ENG | Cookies and privacy

Bigger font | Smaller font

Show document Help

Title:Two constructions of continua: inverse limits and compactifications
Authors:ID Sovič, Tina (Author)
ID Banič, Iztok (Mentor) More about this mentor... New window
ID Mouron, Christopher (Comentor)
Files:.pdf DR_Sovic_Tina_2013.pdf (861,84 KB)
MD5: 633778B3FEBA44A9913890AC2A904A24
 
Language:English
Work type:Dissertation
Typology:2.08 - Doctoral Dissertation
Organization:FNM - Faculty of Natural Sciences and Mathematics
Abstract:In the thesis we talk about two different constructions of continua. First we present the generalized inverse limits, with help of which we construct Wazewski's universal dendrite. What follows is a description of the compactifications of a ray and the presentation of results about their span. The first chapter will be an introduction to the continuum theory trough interesting examples, as sin(1/x)-continuum, Hilbert cube, Brouwer-Janiszewski-Knaster continuum and pseudoarc. We will present some of their properties, among which irreducibility, smoothness and span zero are the most important ones for us. In the continuation we intend to present some various constructions of continua. The main focus will be on the generalized inverse limits and compactifications of rays, which will also be a central part of the thesis. In this chapter, we also study inverse limits in the category of compact Hausdorff spaces with upper semi-continuous functions. We show that the inverse limits with upper semi-continuous bonding functions, together with the projections are weak inverse limits in this category. The following two are the most important chapters in the thesis. The first is a detailed description of a construction of the family of upper semi-continuous functions f, such that the inverse limit of the inverse sequence of unit intervals and f, as the only bonding function, is homeomorphic to Wazewski's universal dendrite for each of it. Among other results we will also give a complete characterization of comb-functions, for which the inverse limits of the type described above are dendrites. The next important chapter will be about compactifications of rays. In the first part of this chapter we will use compactifications to prove that for each continuum Y there is an irreducible smooth continuum that contains a topological copy of Y. The second part presents the main results of this chapter; i.e. the span of a compactification of a ray with a remainder that has a span zero is also zero. In the proofs of this chapter we will help ourselves with a discretization of span.
Keywords:continua, inverse limit, inverse sequence, upper semi-continuous function, set-valued functions, bonding function, hyperspace, dendrite, universal dendrite, category, compactification, compactification of a ray, smooth continua, irreducible continua, span, span zero
Place of publishing:[S. l.
Publisher:T. Sovič]
Year of publishing:2013
PID:20.500.12556/DKUM-41143 New window
UDC:515.126(043.3)
COBISS.SI-ID:20021512 New window
NUK URN:URN:SI:UM:DK:UONRH9WO
Publication date in DKUM:25.09.2013
Views:2243
Downloads:188
Metadata:XML DC-XML DC-RDF
Categories:FNM
:
SOVIČ, Tina, 2013, Two constructions of continua: inverse limits and compactifications [online]. Doctoral dissertation. S. l. : T. Sovič. [Accessed 22 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=41143
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Searching for similar works...Please wait....
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:Slovenian
Title:Dve konstrukciji kontinuumov: inverzne limite in kompaktifikacije
Abstract:V disertaciji sta podrobneje opisani dve konstrukciji kontinuumov. Najprej so predstavljene posplošne inverzne limite s pomočjo katerih je konstruiran t.i. univerzalni dendrit Wazewskega. Temu sledi opis kompaktifikacij žarkov in predstavitev rezultatov o njihovem razponu. V uvodnem poglavju so predstavljeni kuntinuumi z najzanimivejšimi primeri, kot so sin(1/x)-kontinuum, Hilbertova kocka, Knasterjev kontinuum in psevdolok. Predstavljeni so hiperprostori in nekatere izmed lastnosti kontinuumov, kot so: ireducibilnost, gladkost in ničelni razpon. V nadaljevanju je predstavljenih nekaj različnih konstrukcij kontinuumov. Poudarek je na posplošenih inverznih limitah in na kompaktifikacijah žarkov, ki predstavljajo osrednjo vlogo disertacije. V tem poglavju so obravnavane tudi inverzne limite v kategoriji kompaktnih Hausdorffovih prostorov skupaj z navzgor polzveznimi preslikavami. Dokazano je, da so posplošene inverzne limite z navzgor polzveznimi veznimi preslikavami, skupaj s projekcijami šibke inverzne limite v tej kategoriji. Sledita najpomembnejši poglavji disertacije. Prvo podrobneje opisuje konstrukcijo družine navzgor polzveznih veznih preslikav f, takšnih, da je za vsako izmed njih inverzna limita inverznega zaporedja enotskih intervalov in f, kot edine vezne preslikave, homeomorfna univerzalnemu dendritu Wazewskega. Poleg drugih rezultatov je podana tudi popolna karakterizacija t.i. funkcij glavnik, katerih inverzne limite zgoraj opisanega tipa, so dendriti. Naslednje pomembno poglavje govori o kompaktifikacijah žarka. V prvem delu poglavja je s pomočjo takih kompaktifikacij dokazano, da za vsak kontinuum Y obstaja ireducibilen gladek kontinuum, ki vsebuje homeomorfno kopijo Y. Drugi del vsebuje osnovno tezo tega poglavja, ki pravi, da imajo vse kompaktifikacije žarka, katerih ostanek ima ničelni rapon, prav tako ničelni razpon. Dokazi tega dela poglavja so zapisani s pomočjo diskretizacije razpona. V zadnjem poglavju disertacije so predstavljeni še odprti problemi in možnosti za njihovo reševanje.
Keywords:kontinuum, inverzna limita, inverzno zaporedje, navzgor polzvezna preslikava, večlična preslikava, vezna funkcija, hiperprostor, dendrit, univerzalni dendrit, kategorija, kompaktifikacija, kompaktifikacija žarka, gladki kontinuum, ireducibilni kontinuum, razpon, ničelni razpon


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica