Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
Direktni produkti polnih grafov
Authors:
ID
Mekiš, Gašper
(Author)
ID
Klavžar, Sandi
(Mentor)
More about this mentor...
Files:
DR_Mekis_Gasper_2013.pdf
(466,86 KB)
MD5: B44A92A526A30B44A54C33ABEBD8299B
PID:
20.500.12556/dkum/23fd59a9-463b-4790-a5c7-51d3f2e6e4dc
Language:
Slovenian
Work type:
Dissertation
Typology:
2.08 - Doctoral Dissertation
Organization:
FNM - Faculty of Natural Sciences and Mathematics
Abstract:
Prvi del disertacije je posvečen neodvisnim dominantnim množicam direktnega produkta štirih polnih grafov. Eksplicitno so opisane T1-množice, tj. množice, kjer se poljubni par vozlišč ujema na natanko enem mestu. Glavni rezultat tega dela reče, da direktni produkt štirih polnih grafov premore idomatsko particijo na T1-množice natanko tedaj, ko sta reda vsaj dveh faktorjev deljiva s 3. V nadaljevanju postane osrednja tema dominantno in polno dominantno število direktnega produkta končno mnogo polnih grafov. Za slednje grafe je podana spodnja meja, ki je točna, če so faktorji dovolj veliki v primerjavi s številom faktorjev. Najsplošnejši rezultat tega dela je spodnja meja za dominantno (in polno dominantno) število direktnega produkta poljubnih dveh grafov, ki je izražena z dominatnima številoma faktorjev. Opisane so neskončne družine grafov, ki zavzamejo enakost. Zadnji del je posvečen mavrični povezanosti direktnega produkta. Podana je zgornja meja za mavrično povezanost direktnega produkta dveh grafov v odvisnosti od mavrične povezanosti faktorjev in še dveh podobnih invariant dobljenih s pomočjo lihih ciklov. Izkaže se, da so ravno polni grafi izjema omenjene meje. Za produkt dveh polnih grafov je dana točna vrednost (krepke) mavrične povezanosti. Kot dodatek so na koncu podani tudi nekateri rezultati glede ostalih treh standardnih grafovskih produktov.
Keywords:
direktni produkt grafov
,
dominantna množica
,
dominantno število
,
idomatska particija
,
krepka mavrična povezanost
,
neodvisna množica
,
mavrična povezanost
,
polna dominantna množica
,
polni graf
,
polno dominantno število
Place of publishing:
[Maribor
Publisher:
G. Mekiš]
Year of publishing:
2013
PID:
20.500.12556/DKUM-39998
UDC:
519.17(043.3)
COBISS.SI-ID:
19790856
NUK URN:
URN:SI:UM:DK:EMMKXIJX
Publication date in DKUM:
04.04.2013
Views:
3284
Downloads:
187
Metadata:
Categories:
FNM
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MEKIŠ, Gašper, 2013,
Direktni produkti polnih grafov
[online]. Doctoral dissertation. Maribor : G. Mekiš. [Accessed 27 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=39998
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Direct products of complete graphs
O b-kromatičnem številu nekaterih grafovskih produktov
GHG emissions reduction based on a heuristic optimization approach
The number of partitions of a non-negative integer
STRONGLY DISTANCE-BALANCED GRAPHS
Similar works from other repositories:
On generalized Cayley graphs
Automorphism groups of wreath product digraphs
Automorphism groups of Cayley digraphs of Zp3
The full automorphism group of a Cayley graph
Algebraic combinatorics on the Adriatic coast III, May 16-17, 2008, UP FAMNIT Koper, Slovenia
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
Direct products of complete graphs
Abstract:
In the first part of this thesis independent dominating sets in the direct product of four complete graphs are considered. Possible types of such sets are classified. The sets in which every pair of vertices agree in exactly one coordinate, called T1-sets, are explicitly described. It is proved that the direct product of four complete graphs admits an idomatic partition into T1-sets if and only if each factor has at least three vertices and the orders of at least two factors are divisible by 3. Next attention is focused on the domination number and the total domination number of the direct product of finitely many complete graphs. For this graphs a sharp lower bound is given. Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result of this part gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs. This bound is given in terms of domination numbers of the factors. Infinite families of graphs that attain the bound are presented. Some additional parallels with the total domination number are made. In the last part an upper bound for the rainbow connection number of the direct product of two graphs is given in terms of rainbow connection number of the factors and two similar invariants obtained with help of odd cycles. As it turns out, complete graphs form an exception for the bound. To fill the gap, an exact value of the (strong) rainbow connection number for products of two complete graphs is provided. As an extra, at the end some results concerning the remaining three standard graph products are given.
Keywords:
complete graph
,
direct product of graphs
,
dominating set
,
domination number
,
idomatic partition
,
independent set
,
rainbow connection number
,
strong rainbow connection number
,
total dominating set
,
total domination number
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back