Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
|
|
SLO
|
ENG
|
Cookies and privacy
DKUM
EPF - Faculty of Business and Economics
FE - Faculty of Energy Technology
FERI - Faculty of Electrical Engineering and Computer Science
FF - Faculty of Arts
FGPA - Faculty of Civil Engineering, Transportation Engineering and Architecture
FKBV - Faculty of Agriculture and Life Sciences
FKKT - Faculty of Chemistry and Chemical Engineering
FL - Faculty of Logistic
FNM - Faculty of Natural Sciences and Mathematics
FOV - Faculty of Organizational Sciences in Kranj
FS - Faculty of Mechanical Engineering
FT - Faculty of Tourism
FVV - Faculty of Criminal Justice and Security
FZV - Faculty of Health Sciences
MF - Faculty of Medicine
PEF - Faculty of Education
PF - Faculty of Law
UKM - University of Maribor Library
UM - University of Maribor
UZUM - University of Maribor Press
COBISS
Faculty of Business and Economic, Maribor
Faculty of Agriculture and Life Sciences, Maribor
Faculty of Logistics, Celje, Krško
Faculty of Organizational Sciences, Kranj
Faculty of Criminal Justice and Security, Ljubljana
Faculty of Health Sciences
Library of Technical Faculties, Maribor
Faculty of Medicine, Maribor
Miklošič Library FPNM, Maribor
Faculty of Law, Maribor
University of Maribor Library
Bigger font
|
Smaller font
Introduction
Search
Browsing
Upload document
For students
For employees
Statistics
Login
First page
>
Show document
Show document
Title:
FILTER Z DELCI ZA LOKALIZACIJO V BREZŽIČNIH SENZORSKIH OMREŽJIH
Authors:
ID
Svečko, Janja
(Author)
ID
Gleich, Dušan
(Mentor)
More about this mentor...
ID
Kotnik, Bojan
(Comentor)
Files:
DR_Svecko_Janja_2012.pdf
(5,32 MB)
MD5: 3136AD91CC5C95B8550E53513E7F3854
PID:
20.500.12556/dkum/3d82523a-6a6a-41dc-a961-5c3e9a240ff2
Language:
Slovenian
Work type:
Dissertation
Typology:
2.08 - Doctoral Dissertation
Organization:
FERI - Faculty of Electrical Engineering and Computer Science
Abstract:
Doktorska disertacija predstavlja algoritem za določanje razdalje med slepim vozliščem in referenčnim vozliščem v brezžičnem senzorskem omrežju (ang. Wireless Sensor Network – WSN) z zajemanjem meritev indikatorja moči sprejetega signala (ang. Received Signal Strength Indicator – RSSI) na antenskem sklopu sprejemnika. Za ocenjevanje razdalj smo v doktorski disertaciji uporabili Bayesovo sklepanje in filter z delci (ang. particle filter). Z Bayesovim sklepanjem prvega reda in s predhodno izbranim modelom širjenja signala (log-normalni model ali odbojni model) smo določili razdaljo iz zajetih meritev RSSI. Apriorno verjetnost v Bayesovem sklepanju smo modelirali z Gauss-Markovimi naključnimi polji (ang. Gauss-Markov Random Field – GMRF), za opis verjetja pa je bila uporabljena Gamma porazdelitvena funkcija. Ocena razdalje je izvedena s cenilko največje posteriorne verjetnosti (ang. Maximum a posterior – MAP). Bayesovo sklepanje drugega reda, pri katerem smo vrednotili maksimirane robne porazdelitve, smo uporabili za določitev najboljših parametrov apriorne verjetnosti in stopnjo modela oziroma števila anten antenskega sklopa. Za nadaljnjo oceno razdalje smo uporabili filter z delci z metodo prevzorčenja (ang. Sequential Importance Resampling – SIR). Znotraj filtra smo za postopek tipanja uporabili Gaussovo porazdelitveno funkcijo in za posodobitev uteži primerjali med uporabo Gamma porazdelitvene funkcije in Gaussove funkcije. Eksperimentalni rezultati v doktorski nalogi, ki zajemajo realne meritve RSSI-jev in ocenjene razdalje z Bayesovim sklepanjem in filtra z delci, nam kažejo, da je možno oceniti razdaljo med slepim in referenčnim vozliščem 0,03 m natančno. Pri tem je natančnost metode odvisna od samega prostora in odbojev v njem ter od uporabljenih modelov in strojne opreme. Natančnost oziroma napaka je podana kot absolutna vrednost razlike dejanske in ocenjene razdalje.
Keywords:
filter z delci
,
indikator moči sprejetega signala
,
brezžična senzorska omrežja
,
več anten
Place of publishing:
[Maribor
Publisher:
J. Svečko
Year of publishing:
2012
PID:
20.500.12556/DKUM-38918
UDC:
681.586:528.021(043.2)
COBISS.SI-ID:
264239104
NUK URN:
URN:SI:UM:DK:OPF0G9WT
Publication date in DKUM:
20.11.2012
Views:
2711
Downloads:
244
Metadata:
Categories:
KTFMB - FERI
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
SVEČKO, Janja, 2012,
FILTER Z DELCI ZA LOKALIZACIJO V BREZŽIČNIH SENZORSKIH OMREŽJIH
[online]. Doctoral dissertation. Maribor : J. Svečko. [Accessed 7 April 2025]. Retrieved from: https://dk.um.si/IzpisGradiva.php?lang=eng&id=38918
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Optične lastnosti plastično derformiranega bakra
Uporaba AFM-spektroskopije sil za spremljanje odziva polimernih molekul na v rani podobna okolja med celjenjem
Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilization
Funkcionalizacija AFM-konic za uporabo v spektroskopiji sil med polimeri in modelnimi površinami
Analiza površine vlaken z mikroskopijo atomskih sil (AFM)
Similar works from other repositories:
Phase changes in molybdenum oxides induced by AFM tip and laser excitation
Določanje debeline enomolekulskih plasti maščobnih kislin na vodni gladini in na trdnih substratih
Lastnosti poljske emisije iz nanožičk volframovih oksidov
Graphene/organic semiconductor systems
Physics of colloidal interactions in protein aggregation processes
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Title:
PARTICLE FILTER FOR LOCALIZATION IN WIRELESS SENSOR NETWORKS
Abstract:
This dissertation presents an algorithm for distance determination between a tag node and an anchor node in the Wireless Sensor Network – WSN, with multiple antennas using the Received Signal Strength Indicator – RSSI. Bayesian inference and particle filter are used for distance estimation. With the first order Bayesian inference we determined the distance from RSSI readings, using a preselected radio propagation model (Log-normal or Ground reflection model). The prior within Bayesian inference is modeled using Gauss-Markov Random Field and the likelihood is presented with the Gamma probability density function. Distance estimation is done with Maximum a posterior (MAP) estimation. The second order Bayesian inference was used to estimate the best parameters of the priori and model order (number of antennas), which was done with evidence maximization evaluation. For further distance estimation, we used particle filter with the Sequential Importance Resampling - SIR algorithm. Gaussian probability density function was used to process importance sampling and a comparison between Gamma and Gaussian probability density function was made for importance weights update. Experimental results of the dissertation, which include real RSSI readings and the estimated distances of Bayesian inference and particle filter, show that it is possible to estimate the distance between the tag node and anchor node with 0,03 m accuracy. The accuracy of the method depends on the space itself and the reflections in it, and from the used models and hardware. Accuracy (distance error) is defined as an absolute value of the difference between the actual and estimated distance.
Keywords:
particle filter
,
localization
,
received signal strength indicator
,
wireless sensor network
,
multiple antennas
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back